Syac
FREE

SyncFree Technology White Paper

Lasp: A Programming Language for Large-Scale Available Systems

Chris Meiklejohn
Université Catholique de Louvain

6 September 2016

Motivation

With the advent of cheap, yet powerful, mobile devices,
seemingly overnight, application developers have had to
embrace a new form of concurrent programming: namely,
distributed programming.

Distributed programming is challenging to get right:
multiple clients can be accessing, and attempting to mod-
ify, shared resources at the same time and messages be-
tween clients can be observed in different orders by different
clients. Fundamental to the problem is the notion of par-
tial failure: given I have sent a message to a device asking
for a response and have not received it yet, how do I know
if that device received the message and is still processing,
didn’t receive the message at all, or has died?

Additionally, “near-native” experiences have been the
gold standard in industry: application developers want
their mobile applications to respond to actions immedi-
ately, as if remote resources were available locally, to pro-
vide a smooth experience to users. To facilitate this “near-
native” experience, developers must introduces additional
complexity in terms of state: clients will aggressively cache
values locally and perform operations on local copies of that
state to be synchronized later. What happens when syn-
chronization at a later time determines that these changes
are no longer compatible?

Lasp is a new programming language and runtime sys-
tem for distributed programming that attempts to solve
these problems. Lasp attempts to use a principled ap-
proach for dealing with highly-available data, data that is
replicated and periodically synchronized with convergence
rules, for providing an efficient programming environment
for building large-scale applications, alleviating the need for
users to reason about the uncertainties in distributed pro-
gramming: an unreliable network where messages between
clients may be dropped or re-ordered.

Target Audience

Lasp is targeted at application developers building large-
scale applications with replicated, shared state. While the
current Lasp prototype implementation is built in Erlang,
the techniques that are employed by Lasp can be used
across a variety of domains, all of which we’re going to
explore in the near future: domains, such as, but not lim-
ited to, web programming with JavaScript, and mobile pro-
gramming with Java and Swift.

Thttps://github.com/lasp-lang/lasp

Lasp

Lasp takes a holistic approach at distributed computing
by combining two techniques: a programming language
for authoring of distributed programs, and a distributed
runtime for the execution of these programs.

Lasp implements a subset of a functional program-
ming language over a limited set of data types chosen for
their convergence properties. These data types, known
as Conflict-Free Replicated Data Types, are abstract data
types extended with functions for conflict resolution for
synchronization under concurrent modification. Lasp ex-
tends a programming model to these data types, so ap-
plication developers can create applications as if they are
using the normal techniques of functional programming,
but the applications themselves are free from concurrency
anomalies.

Lasp’s distributed runtime system is architected for
scale. Leveraging state-of-the-art techniques for reduced
state transmission and large-scale membership, applica-
tions in Lasp have been demonstrated to scale to single
clusters of 500 nodes. Lasp’s runtime system is dynamic
and configurable at runtime: stable networks can take ad-
vantage of optimizations, but Lasp also provides efficient
solutions for networks with high churn and failure rates:
this allows Lasp to be ideal for stable intra-datacenter fo-
cused scenarios, large-latency inter-datacenter focused sce-
narios, and mobile networks where churn is high and clients
are transient.

Lasp is open source and available on GitHutﬂ We pro-
vide configurations for running Lasp with Docker and for
performing large-scale deployments with the Mesos cluster
computing framework.

Positioning

Lasp is a combination of the other techniques from the
SyncFree project, combined to form a complete platform for
large-scale development of distributed applications. Lasp’s
goal is to combine the data structures, formal verification
and analysis techniques, invariant preservation data struc-
tures, and optimized solutions for state dissemination to
provide an easy to use, all encompassing solution for appli-
cation development.

Lasp’s system presents a layered approach to the design
of the language and runtime solution:


https://github.com/lasp-lang/lasp

Lasp: Programming Language for Large-Scale Systems

SyncFree — UCL

¢ Membership Overlay: Lasp’s membership overlay
layer is configurable at runtime and supports net-
works of low churn for use in data centers and net-
works of high churn for use in large-scale mobile net-
works [3].

e Broadcast Overlay: When the network conditions
are ideal, Lasp can optimize dissemination through
the use of broadcast primitives build on top of the
membership overlay [2, [6].

e Data Types: Lasp has support for both pure-
op based CRDTs and state-based CRDTs (with
0—CRDTs for efficient incremental state transmis-
sion.) 7, 8]

e Key-Value Store: For the storage of state, each
node runs a Lasp KV store locally.

e Programming Model: Lasp provides a functional
programming model built on top of a dynamic
dataflow execution engine [4 [5].

e Deployment and Packaging: Lasp is packaged for
Ubuntu, supports deployment with Docker and has
prototype integration with the Mesos cloud comput-
ing framework for the deployment and operations of
large Lasp deployments within the data center [I].

Lasp is a unique offering the space of distributed pro-
gramming: no system currently exists like it and is the re-
sult of collaboration between academia and industry. We’ve
seen many companies offering similar solutions, but most
are ad-hoc and don’t combine the techniques as Lasp does
today.

References

(1]

2]

13l

[4]

[5]

[6]

7]

8]

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica. Mesos: A Plat-
form for Fine-Grained Resource Sharing in the Data Center.
In NSDI, volume 11, pages 2222, 2011.

J. Leitao, J. Pereira, and L. Rodrigues. Epidemic broad-
cast trees. In Reliable Distributed Systems, 2007. SRDS
2007. 26th IEEE International Symposium on, pages 301—
310. IEEE, 2007.

J. Leitao, J. Pereira, and L. Rodrigues. HyParView: A
membership protocol for reliable gossip-based broadcast. In
37th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN’07), pages 419-429.
IEEE, 2007.

C. Meiklejohn and P. Van Roy. The implementation and use
of a generic dataflow behaviour in erlang. In Proceedings of
the 14th ACM SIGPLAN Workshop on Erlang, pages 39—45.
ACM, 2015.

C. Meiklejohn and P. Van Roy. Lasp: A language for dis-
tributed, coordination-free programming. In Proceedings of
the 17th International Symposium on Principles and Prac-
tice of Declarative Programming, pages 184-195. ACM, 2015.

C. Meiklejohn and P. Van Roy. Selective Hearing: An Ap-
proach to Distributed, Eventually Consistent Edge Compu-
tation. In Reliable Distributed Systems Workshop (SRDSW),
2015 IEEE 84th Symposium on, pages 62—67. IEEE, 2015.

P. Sérgio Almeida, A. Shoker, and C. Baquero. Delta State
Replicated Data Types. ArXiv e-prints, Mar. 2016.

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In Symposium on Self-
Stabilizing Systems, pages 386—400. Springer, 2011.



	Motivation
	Target Audience
	Lasp
	Positioning

