
SyncFree Technology White Paper

Just-Right Consistency,
or

How to tailor consistency to application requirements

Nuno Preguiça, U. Nova de Lisboa
Marc Shapiro, UPMC-LIP6 & Inria

25 December 2016

Why application developers care
about consistency

Companies that operate over the Internet need to provide
services to millions of users scattered across the globe. It is
imperative to have services that are available, scalable and
fast, so that the expectations of their users are met. Fail-
ing to address these requirements may harm revenue and
ultimately lead to the shut down of the Internet service [4].

Replication is a key technique for achieving these prop-
erties. When data is replicated at multiple machines, mul-
tiple copies of the same data exist. Some systems adopt
a strong consistency model, enforcing a single view of the
data across the different replicas. Several designs have been
proposed for scaling strong consistency systems, but these
designs provide low latency only within the boundaries of
a data center, because replicas need to coordinate before
replying to a request. Furthermore, these designs fail to
offer high availability in the presence of network partitions
and server failures and are much harder to scale.

This is why many companies adopt so-called AP (Avail-
able under network Partition) models, particularly for geo-
replication scenarios. Under an AP model, a replica will
always accept an update, without checking other replicas
first, since this would violate availability. Thus replicas
may diverge temporarily; updates are propagated in the
background (asynchronously) to other replicas. The ad-
vantage is low latency, high availability, and efficient use of
CPU resources, but it makes writing applications more dif-
ficult, as concurrent updates may conflict and compromise
application correctness.

A well-known AP model is Eventual Consistency, which
is particularly efficient and scalable, because it enables un-
limited parallelism. However, Eventual Consistency is also
highly anomalous, since even two closely related updates
may be observed in any order and mixed with other up-
dates.

The SyncFree consistency model

The SyncFree geo-replicated database Antidote offers the
strongest AP consistency model. It is called Transac-
tional Causal Consistency (TCC), because it supports both
highly-available transactions and causal visibility. Causal
visibility guarantees that dependent updates are applied in

the correct order: for example, in a train reservation sys-
tem, a reservation for a new car is only applied after the
operation that added that car to the train. Transactions
guarantee that a set of operations happen consistently and
in an all-or-nothing fashion. For example, two reservations
inside a transaction are both made visible at the same time.

TCC can be as available, scalable and performant as
eventual consistency, but developers using TCC enjoy the
guarantees of transactions and causal visibility, and re-
lated updates will not suffer anomalies. In this sense, TCC
partially bridges the gap with strong-consistency models.
However, TCC does allow concurrent updates to the same
data item; these are merged (instead of leading to aborts
as in traditional SQL-style transactions).

Co-designing the application and the
model

Since concurrent updates are allowed, and even though its
guarantees are relatively strong, the TCC model is not suf-
ficient to guarantee the correct execution of some applica-
tions. This is because some kinds of application invariants
require concurrency control, which conflicts with availabil-
ity. However, switching to a strongly-consistent (and non-
available) model, which orders all updates, is overkill in
many cases.

Consider, for instance, an e-commerce application that
sells some articles in stock. To avoid that stock becomes
negative, one way would be to run the application above a
strongly-consistent database. However, it should be clear
replenishing the stock cannot make stock negative, and
therefore does not need to be synchronised.

The Just-Right Consistency approach consists of heuris-
tics and tools to ensure that the system has sufficient con-
currency control to ensure the application is correct, but no
more, and that minimises its availability and performance
impact.

The heuristics are encapsulated in specialised data
types. For instance, the e-commerce stock example can be
solved by using the Bounded Counter CRDT provided with
Antidote. This data type will stop stock-depleting opera-
tions from going under zero but will allow stock-increasing
operations at all times. Furthermore it enables logically di-
viding the stock, so that most stock-depleting operations
are available too. The Bounded Counter CRDT is de-

1



Just-Right Consistency SyncFree

scribed in the companion white paper, “Bounded Counters:
maintaining numeric invariants with high availability.”

SyncFree also offers automated tools to carefully analyse
the application and detect which operations require con-
currency control. For instance, the tools would analyse the
e-commerce application and automatically determine that
stock-increasing operations do not need synchronisation,
but that stock-depleting ones may violate the non-negative-
stock invariant. How to repair this issue is the developer’s
design decision. One alternative is to strengthen the consis-
tency by controlling the concurrency of the stock-depleting
operations, e.g., disallowing concurrent sales of the same
item. The (only) other alternative is to weaken the specifi-
cation, e.g., accept that stock becomes negative and auto-
matically ordering new stock to compensate. The former
approach decreases availability but ensures the invariant is
always true; the latter remains available but may be more
dangerous.

We have developed two tools to this effect.
CISE The CISE tool statically verifies that a given appli-

cation will maintain a given invariant under a given
consistency model. If not, the CISE tool will provide
a counter-example that helps the developer diagnose
and add the missing concurrency control. Then the
developer runs the tool again, and so on until the ver-
ification succeeds. Once the verification is successful,
this is a proof that the invariant will be satisfied in
all executions.

IPA The IPA tool does a similar analysis to CISE. When
verification fails, IPA will automatically propose ap-
propriate weakenings of the specification.

They are described in more detail hereafter.

The CISE Tool

While some applications can run correctly under weak con-
sistency, others require some degree of synchronization for,
at least, some operations. CISE tool allows to verify if an
application will run correctly under weak consistency or
whether it requires some degree of synchronization.

As such, CISE tool will be used by application program-
mers to verify their applications before deployment. CISE
tool needs to be used whenever the application specification
is changed, i.e., new operations are added or the behavior
of operations is changed.

How to use CISE

For using the CISE tool, the application programmer must
specify the application correctness criteria as a set of in-
variants over the applications state. Additionally, she must
specify the pre-conditions and post-conditions of the oper-
ations defined in the application.

Given these input, the CISE tool will verify if the pro-
gram will run correctly under weak consistency. When this
is not the case, the tool will present a counter-example with
a run that leads to the violation of an application invariant
when executing a pair of concurrent operations.

The tools is additionally able to identify a minimal set
of synchronisation points in application operations that,
when enforced, guarantee the correct executions of the ap-
plication. These synchronisation points are implemented
by a set of tokens (a.k.a., reservations) and escrowable data

types (e.g., the Bounded Counter) that restrict the concur-
rent execution of some operations.

The modified application adopts a hybrid approach
where some operations remain unsynchronised but selected
ones are synchronised. For instance, consider a train-
reservation example with the invariant “no overbooking.”
The tool would allow concurrently adding a car, but would
flag concurrent reservations as unsafe and would propose
the synchronisation to be added. The developer has the op-
tion of changing the specification (e.g., allowing overbook-
ing), or adding the suggested synchronisation – in this case,
using the Bounded Counter would allow different replicas
to concurrently accept reservations to the same car that do
not exceed some threshold, while tokens would allow a sin-
gle replica to accept reservations for a given car at a given
moment. The tool should be used again to validate the
modified application.

The CISE tool is instrumental to help programmers
achieve correct behavior and good performance. Too much
synchronisation degrades performance and availability; too
little might corrupt data.

The CISE tool is generic, and can verify the correct
maintenance of application invariants for many weak con-
sistency models, including Antidote, Lasp and Legion.
However, the analysis requires at least causal visibility of
updates.

What’s behind the CISE tool

The CISE tool builds upon a sound verification logic [1]. It
can be summarised by the following three rules: (i) Each
update must be individually correct, i.e., that before mak-
ing any changes, it checks a precondition establishing that
the update will maintain the invariant. (ii) Any two con-
current updates must commute. (iii) If an update u is
concurrent with some update v, then the precondition of u
(from Rule (i)) must not be made false by applying v.

If any update violates Rule (i), then the application is
incorrect even in a sequential execution. To fix it, the devel-
oper must either strengthen the precondition or weaken the
invariant. If any pair of updates violates Rule (ii), then the
developer must, either redesign the updates (weakening the
specification), or insert concurrency control, so that they
do not execute concurrently. Similarly, if any pair violates
Rule (iii), the developer must either weaken the specifica-
tion or insert concurrency control.

Check out our description of the tool [2] and our demo
video [3]. The source code of the CISE tool is available on
the SyncFree github [5].

The IPA tool

The previous tools allow to verify that an application can
run correctly under weak consistency. When this is not
possible, if the programmer does not want to change the
correctness rules of the application, the previous tools pro-
pose restricting the concurrent execution of operation by
adding synchronisation points, thus guaranteeing that the
modified applications will execute correctly. This synchro-
nisation imposes overhead to the operation execution and
reduces availability and fault tolerance.

It has been shown that in some situations, it is possible
to enforce the same correctness rules under weak consis-

2



Just-Right Consistency SyncFree

tency by slightly changing the specification of operations
and using per-object conflict resolution rules. However,
identifying such situations is not trivial. The IPA tool ad-
dresses this problem by identifying which operations and
how these operations must be modified to execute correctly
under weak consistency.

As such, the IPA tool will be be used by application pro-
grammers to modify their applications before deployment.
For operations that cannot be modified, the application
programmer must add some form of synchronisation. To
this end, she can use the CISE tool for helping her identi-
fying the synchronisation point required.

For using the IPA tool, the application programmer
must specify the application correctness criteria as a set
of invariants over the applications state. Additionally, she
must specify the effects (post-conditions) of the operations
defined in the application.

Given these inputs, the IPA tool detects which pairs of
operations can lead to incorrect behavior when executed
concurrently under weak consistency, and suggests modifi-
cations to the application to make them execute correctly.
These modifications consist in defining appropriate rules
for merging concurrent updates in each object and identi-
fying the set of additional effects that are necessary in each
operation in order to make the operation compatible with
all other concurrent operations.

The IPA tool is complementary to the CISE tool. While
the IPA tool helps programmers extend the set of oper-
ations that can run correctly under weak consistency by
modifying the operations, it will be impossible to mod-
ify all operations. The CISE tool can be used to help a
programmer adding the necessary synchronisation for her
application to run correctly under weak consistency.

As the CISE tool, the IPA tools can be used with ap-
plications that use Antidote, it can also be used with ap-
plication that run other weakly consistent databases.

The IPA tool systematically explores all pairs of updates
that may execute concurrently, and verifies if the concur-
rent execution of such operations would lead to an invariant
violation. When this is the case, it explores if the opera-
tions can execute concurrently if some effects are added to
each of the operations.

Related tools

We already mentioned Bounded Counters. The SyncFree
project has developed two further related tools, Comman-
der and Verifico.

Commander Commander is a tool for finding application
bugs in an application running above a weak consis-
tency model. Commander systematically explores op-
eration reorderings in order to detect cases that will
violate application invariants. Compared with CISE
and IPA, Commander is focused on run-time checks
and debugging and does not assume causal visibil-
ity. We refer the interested reader to the companion
White Paper: “Commander: Runtime Verification of
Programs Running on Weakly Consistent Platforms.”

Verifico Verifico is a static verification framework, sup-
porting reasoning about application correctness
when running under eventual consistency and using
CRDTs. When compared with CISE, Verifico pro-
vides less automation but more flexibility in the prop-
erties that are verified. We refer the interested reader
to the companion White Paper: “Verifico: CRDT-
App Verification Framework for Isabelle.”

References

[1] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa
Najafzadeh, and Marc Shapiro. ’Cause I’m strong enough:
Reasoning about consistency choices in distributed systems.
In Symp. on Principles of Prog. Lang. (POPL), pages 371–
384, St. Petersburg, FL, USA, 2016.

[2] Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla
Ferreira, and Marc Shapiro. The CISE tool: Proving weakly-
consistent applications correct. In W. on Principles and
Practice of Consistency for Distr. Data (PaPoC), EuroSys
2016 workshops, London, UK, April 2016. ACM SIG on Op.
Sys. (SIGOPS), Assoc. for Computing Machinery.

[3] Mahsa Najafzadeh and Marc Shapiro. Demo of the CISE
tool, November 2015.

[4] Eric Schurman and Jake Brutlag. Performance Related
Changes and their User Impact. Presented at Velocity Web
Performance and Operations Conference, 2009.

[5] SyncFree Project. SyncFree @github. GitHub open-source
repository. https://github.com/SyncFree.

3

https://github.com/SyncFree

	Why application developers care about consistency
	The SyncFree consistency model
	Co-designing the application and the model
	The CISE Tool
	How to use CISE
	What's behind the CISE tool

	The IPA tool
	Related tools

