
Project no. 609551
Project acronym: SyncFree
Project title: Large-scale computation without synchronisation

European Seventh Framework Programme

ICT call 10

Deliverable reference number and title: D.5.1
Tooling: Tools for deployment, benchmarking and testing.

Due date of deliverable: 1 October 2014
Actual submission date: 30 September 2015

Start date of project: 1 October 2013
Duration: 36 months
Name and organisation of lead editor
for this deliverable: Basho Technologies Ltd.
Revision: 1.1
Dissemination level: CO

SyncFree Deliverable D.5.1(v1.1), 30 September 2015

CONTENTS

Contents

1 Executive summary 1

2 Milestones in the Deliverable 2
2.1 M24 Update . 2

3 Contractors contributing to the Deliverable 3
3.1 Basho . 3
3.2 Trifork . 3
3.3 INRIA . 3
3.4 UNL . 3
3.5 UCL . 3
3.6 KL . 3

4 Background 4

5 Goals and KPIs 5

6 Basho Bench 6

7 Riak Test 6

8 QuickCheck model for core of Derflow 8

9 Adaptive Replication Simulation Tool 8

10 Megaload 8

11 Plans for M24-M36 10

12 Choice of use cases 11
12.1 Wallet . 11
12.2 Leaderboard . 11
12.3 Ad Service . 12
12.4 Configuration files . 12
12.5 Wallet with Antidote . 12
12.6 Big Sets . 12

13 Use of resources 13
13.1 Rovio’s situation . 13

14 Papers and publications 13

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 2

1 EXECUTIVE SUMMARY

1 Executive summary

The SyncFree project aims for enabling trustworthy large-scale distributed appli-
cations in geo-replicated settings. The core concept are replicated yet consistent
data types (CRDTs) which allow information dissemination and sharing without
the need for global synchronization.

Within the project, Work Package 5 (WP5) coordinates the work to validate the
theoretical work on CRDTs on real-life use cases. In the first year of the project, we
focused on building out repeatable testing and benchmarking utilities for both the
deliverables of Work Package 2 (WP2) and Work Package 4 (WP4). These utilities
allow us to test our software under the scenario outlined in the DoW: a static
topology with rare failures and limited replicas, but is also modularized enough to
allow later extension to testing under dynamic membership and failure conditions.

In the second year of the project
We discuss four major contributions:

Basho Bench We adapt the open-source, Erlang-based, benchmarking utility,
basho bench for use with the Work Package 2 (WP2) deliverable, Antidote. We
discuss this implementation in Section 6.

Riak Test We adapt the open-source, Erlang-based, testing utility, riak test for
use with both Work Package 2 (WP2) and Work Package 4 (WP4) deliverables:
respectively, Antidote and Derflow. We discuss this implementation in Section 7.

QuickCheck We use the property-based testing tool for Erlang to build models
for the core of the Work Package 4 (WP4) deliverable, Derflow. We discuss this
implementation in Section 8.

Adaptive Replication We provide a tool for simulation of the adaptive repli-
cation algorithm, as discussed in the work of Work Package 1 (WP1) and Work
Package 2 (WP2). We discuss this implementation in Section 9.

Antidote A number of test cases and utilities for deployment, measuring and
monitoring of Antidote has been added through year2.

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 1

2 MILESTONES IN THE DELIVERABLE

2 Milestones in the Deliverable

Work Package 5 (WP5) was not involved in Milestone 1 (MS1).

Tasks delivered during the M12 period were:

Task no Task name Date due Actual date Lead contractor
T5.1 Tooling: Tools

for deployment,
benchmarking,
replay, and log-
ging and tracing
at extreme scale

M18 M18 BASHO

The work on Task 5.1 started in month 6 and continued until month 18, focusing
on the following goals, as stated in the project proposal:

The objective of this task is to evaluate the behavior and performance of the
outputs from WP 2, WP 3, and WP 4, at scale and under stress from load and
various failure scenarios. To do this, we will develop a set of tools for deploying and
controlling applications, generating load, simulating failures, capturing and replay-
ing (non-personal) traces for comparison, and logging and analysing outputs and
statistics, in a controlled manner. This environment is associated with the platform
developed in WP 2 and benefits from the operational expertise of Rovio and Basho
in automating deployment and accurately tracing and recording behaviour of the
systems. We plan to make use of their expertise and software (Basho’s basho bench
and riak test, Rovio’s Skynest Cloud) for orchestrating repeatable automated de-
ployments and tests at scale.

The rest of the document describes to what extent the progress of this task has
been achieved, resulting in the work delivered for D5.1.

2.1 M24 Update

The use cases described by Rovio and Trifork in D1.1 where all problems which
they had implemented, or tried to implement, using pre-CRDT technology. At the
time they felt that CRDTs would help with either correctness or performance and
availability.

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 2

3 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

3 Contractors contributing to the Deliverable

The following contractors contributed to the deliverables:

3.1 Basho

Christopher Meiklejohn (together with WP2 and WP4).
Russell Brown.

3.2 Trifork

Amadeo Ascó (together with WP1).

3.3 INRIA

Tyler Crain

3.4 UNL

Diogo Serra

3.5 UCL

Zhongmiao Li.
Manuel Bravo.

3.6 KL

Annette Bieniusa.
Deepthi Devaki Akkoorath.

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 3

4 BACKGROUND

4 Background

In this section, we briefly describe the Work Package 2 (WP2) and Work Package
4 (WP4) deliverables: Antidote and Derflow.

Antidote Antidote is a causally consistent, geo-replicated CRDT data store which
features scalable, conflict-free implementations of transactions, by providing con-
sistent, stable snapshots and atomic multi-CRDT updates. In the current version,
each data center fully replicates the CRDT store using a static partitioning scheme.
Updates are propagated by shipping operations in a causally consistent manner for
each transaction. Our approach requires lower bandwidth compared to state-of-the-
art architectures. Transactions with Causal+ Consistency semantics support the
programmer in observing consistent snapshots of the data without requiring global
synchronization.

The source code for Antidote is available on GitHub. https://github.com/

syncfree/antidote.

Derflow Derflow provides a distributed deterministic dataflow programming model
over single-assignment variables and CRDTs. Derflow can run independently or as
a component of Antidote. To support this, and ensure correct behavior and preser-
vation of language-level invariants, the core of the programming model has been
abstracted from the persistence and data storage layers.

The source code for Derflow is available on GitHub. http://www.github.com/
SyncFree/derflow.

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 4

http://www.github.com/SyncFree/antidote
https://github.com/syncfree/antidote
https://github.com/syncfree/antidote
http://www.github.com/SyncFree/derflow
http://www.github.com/SyncFree/derflow
http://www.github.com/SyncFree/derflow

5 GOALS AND KPIS

5 Goals and KPIs

The overall objective is to show that CRDTs are a good thing. We will evaluate
that claim in two ways:

• Easier to use — a qualitative assessment for most parts.

• Performance — latency and throughput.

The metrics for ease of use include number of bugs, size of the code and other
indicators of that type, to assess the claim.

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 5

7 RIAK TEST

6 Basho Bench

Basho Bench is an open-source, Erlang-based benchmarking tool developed by
Basho Technologies, primarily build for testing the operation of Basho’s commercial
database product, Riak.

Basho Bench was extended during the work for Deliverable D.5.1 to operate
with the Work Package 2 (WP2) reference platform Antidote. In extending Basho
Bench, we adapted the benchmarking tool to operate using the transactional API
provided by Antidote. This tool has been used during the development of Antidote
to assist in qualifying patches and improvements to the core functionality of the
reference platform.

The extension to Basho Bench was done as a driver for Antidote using the driver
architecture of Basho Bench. Protocol buffers support were added in a separate
driver. On top of that a number of small changes were made to make Basho Bench
more generic.

Basho Bench will be used to measure performance using graphs like this one:

7 Riak Test

Both Antidote and Derflow are built on top of the Erlang-based distributed systems
framework, riak core. Riak Core provides a series of essential components for
building distributed, fault-tolerant, highly-available applications. These include,
but are not limited to, consistent hashing and managing a group of nodes with
dynamic membership. Riak Core was abstracted out of the distributed database

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 6

7 RIAK TEST

Riak, to provide a basis for building other applications.

Riak Test, the testing tool developed for Riak by Basho Technologies, is primar-
ily focused on testing of Riak clusters. During the work for Deliverable D.5.1, we
identified and performed a series of modification to the Riak Test library, which were
contributed back to the mainline, to support operations over Riak Core application,
instead of only Riak itself.

In the process of this work, we developed a series of tests as well as a stream-
lined testing process for qualifying the behavior of both Antidote and Derflow (aka
LASP).

A selection of some of the tests added to validate Antidote:

append failures test Partitions the network while writing objects to the log and
verifies that the log is merged correctly when the partition heals.

append test Verifies that operations can be written and read back from the log.

clocksi test Verifies the Clock SI protocol implementation: certification check,
multiple read/writes, concurrency.

inter dc repl test Verifies the functionality of the inter-DC extension for Clock
SI.

log handoff test Verifies that during an hand-off process updates are transferred
between nodes.

log test Basic test of the log: perform a sequence of write operations to a counter
and ensure that the correct value for the counter is read back.

mvreg test Verifies the implementation of a MV-Register CRDT.

opbcounter test Verification of a Bounded Counter CRDT.

oporset test Verifies the implementation of the operation-based OR-set.

pb client test Verifies that the protocol buffer API functions correctly.

The streamlined testing process builds releases and automatically runs the test
suite for every test in the riak test directory.

For LASP, there is a test case for every feature in the language. A single
’make’ target will automatically download riak test, configure it, build a bunch of
development releases, and run the entire suite. This enables using Travis CI for
testing all of the riak test work.

These tests are not only used for qualifying new changes to both applications,
but also are used for ensuring scalability and performance improvements do not
degrade or harm performance of the current system.

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 7

10 MEGALOAD

8 QuickCheck model for core of Derflow

The Work Package 4 (WP4) deliverable, Derflow (aka LASP), provides a program-
ming model that supports distributed deterministic dataflow programming. This
model relies on a variable store, which is shared between all processes performing
computations.

Derflow can be configured to run in different environments:

Standalone In standalone model, Derflow can run programs using its own distri-
bution model, which stores variables used in computations in the Erlang Term
Storage system.

Antidote Derflow is also aimed at running on top of the Antidote reference plat-
form for applications requiring Causal+ Consistency using Antidote’s storage
layer as the backing variable store.

Riak Derflow can also run on top of Riak, for use in testing applications deployed
at scale in production, such as our industry partners from Rovio.

To this effect, we have abstracted the core language semantics and invariants out
from the variable storage layer. In performing this abstraction, we have developed
a QuickCheck model that will be used to validate correct execution of new backend
implementations of the programming model, as we optimize performance.

9 Adaptive Replication Simulation Tool

In the context of Deliverable 2.2 of Work Package 2 (WP2), we have studied CRDTs
in partial-replication settings. In one line of this work, we have investigated dynamic
strategies for CRDTs replication on a subset of nodes such that replicas reside close
to users. This work is discussed in detail in Deliverable 2.2.

In the context of Work Package 5, we developed a simulator which implements
the adaptive replication algorithm and allows us to test it as it is being refined. In
particular, the simulator allows us to investigate the influence of different parameter
settings, such as replication factors, varying loads, and threshold values for allocat-
ing or moving replicas. This tool provides an interactive help utility, a “log view”
which displays a log of operations as they occur during execution of the algorithm,
as well as a “graphical view” which shows how the replicas are being moved based
on the algorithm’s output.

The code can be found in the SyncFree github repositories (https://github.
com/SyncFree/AdaptiveReplicationTool).

10 Megaload

One major benefit of bringing Erlang Solutions into the consortium is that we can
utilise the Megaload tool. Megaload was initially developed in the Prowess EU FP7
project and is now being taken to market by ESL.

From the Megaload flyer (http://www.prowessproject.eu/wp-content/uploads/
2015/06/Megaload-Flyer.pdf):

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 8

https://github.com/SyncFree/AdaptiveReplicationTool
https://github.com/SyncFree/AdaptiveReplicationTool
http://www.prowessproject.eu/wp-content/uploads/2015/06/Megaload-Flyer.pdf
http://www.prowessproject.eu/wp-content/uploads/2015/06/Megaload-Flyer.pdf

10 MEGALOAD

Megaload is a scalable load testing tool that provides automatic de-
ployment on cloud environments or physical hardware, allowing you to
simulate a massive amount of load to stress test your system. The power-
ful real time measurement system provides all the information you need
to monitor your tests through the graphical user interface. Megaload is
ideal for online business, SaaS and telecoms companies.

A Megaload test is described and parameterised by a JSON script. A test is
a container of phases, which decide how many users are simulated, at which rate
are they started and how many requests per second are generated. Several phases
can combined into a sequence provided to the test object. The users simulated are
described by the scenario object.

Megaload will be used to drive the test in the large scale experimentation (D5.4).
For generating realistic workloads, we will use basically two types of information:
generic information of the ratio of operation in common workloads provided by
Rovio; information extracted from analysis real logs provided by Basho for some
specific services.

For the large scale testing of Antidote we will also use the graphs generated by
Megaload, e.g., response times as below.

.
No work on Megaload itself is expected in SyncFree, but test cases will be

developed in order to exercise the system under test. This tool will also allow us to
replace all ad-hoc software developed to test the different prototypes produced in
the other Work Packages.

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 9

11 PLANS FOR M24-M36

11 Plans for M24-M36

In addition to the load testing we will also investigate failure injection using the
Commander tool developed by Koç.

The Commander tool provides prioritized systematic exploration of different
event interleavings in a multi-DC system. This is tantamount to exploring the
injection of faults in the form of inter-DC message delays, re-orderings and/or losses.
We start with a recorded execution of the multi-DC system and gradually insert
faults. In each of the fault-injected executions, we determine whether the fault(s)
result in violations of replica-local assertions and invariants on final global state.
Using the Commander tool, application developers can explore how resilient their
CRDT-based programs are to such faults, and introduce invariant preservation,
recovery and repair mechanisms to their programs as needed.

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 10

12 CHOICE OF USE CASES

12 Choice of use cases

12.1 Wallet

Rovio had a Wallet in development, and planned to use conflict resolution based on
vector clocks for wallet balance in order to guarantee correctness in all cases and
even with overlapping writes to same variable. Their experience shows that ad-hoc
and custom conflict resolution is error prone and difficult to implement right (a fair
share of sibling explosions, et cetera, in the wallet proves the point) and thus a more
standardized and easy-to-use way would have been useful to reduce implementation
complexity and improve operational robustness.

CRDTs were seen as the ideal way to implement robust and standard conflict
resolution for the wallet use case without extra implementation overhead. CRDTs
are standardized data types with well defined behaviour in conflict cases. Due to the
standardization it would also possible to implement CRDTs on the database side
(and not in the client library or as custom conflict resolution handler) for maximum
efficiency and make it possible to write code that ”Fire and forget” writes to the
database, instead of Riak’s read+write way which introduced additional overhead
and latency to the process.

Because of these reasons Rovio chose Wallet as a real-world use case for the
SyncFree project and due to data criticality and fact that Wallet would be in the
real operational and business use the large-scale testing was warranted.

However, changes in Rovio’s plan (e.g. no loyalty point scheme yet in the wallet)
and greatly delayed Riak 2.0 rollout with CRDT data types, made it impossible to
do timely testing for Wallet development. Rovio had to rely on custom conflict
resolution without CRDTs. Currently Rovio doesn’t have the resources nor plans
to rewrite the Wallet implementation to use CRDT types and proceed with larger
scale testing.

However, the Wallet example has been adopted by the academic partners using
Antidote, so the knowledge from Rovio has been passed on to that application.
More on this below.

12.2 Leaderboard

For the leaderboards, Rovio has not been able to find a game that would clearly
benefit from distributed score-handling over sending scores to a centralized server.
Some peer-to-peer games would benefit from this, but in practice Rovio does not
have such games in production or plans to prototype at the moment.

There are potentially other applications for CRDT types in online multiplayer
worlds (e.g. large scale Minecraft style gaming) where it’s inpractical (esp. in mobile
networks) to keep the game world completely synchronized between all actors, but
currently Rovio doesn’t have concrete plans on taking such initiative as it’s not
needed for Rovio’s near-term business.

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 11

12 CHOICE OF USE CASES

12.3 Ad Service

Ad Service use case was about making a robust way to count ad impressions that
could be utilized for real-time serving logic for different kinds of campaigns. How-
ever, it turned out that due to complexities in rules for campaign serving and in
balancing inventory between the campaigns a simple counter would not be that
useful.

Rovio has since changed the architecture to be based on precalculated serving
lists for campaigns as that allows the usage of complex business rules without real-
time processing constraints. For the impression reporting it is relying on a big data
analytics pipeline. In practice this means that Rovio doesn’t currently see long-term
need for applications for the distributed counters related to the Ad serving.

12.4 Configuration files

ESL will — as part of D5.3 — compare a non-CRDT solution to a CRDT based
solution for the management of configuration files in a huge Erlang cluster.

For customers with hundreds of Erlang nodes running, it is a nightmare to ensure
that all nodes are using the same configuration, so an automated synchronisation
of them is required to ensure flawless operation of the system. This feature would
add a lot to the operational value of the operations and maintenance tool Wombat
that ESL sells.

Antidote will be used as the CRDT technology to allow more room for exper-
imentation and changes to the CRDTs, should that need arise. This is intended
as a simple use case to verify the scalability of Antidote to many nodes and geo-
replication.

12.5 Wallet with Antidote

In order to get a big enough test example the Wallet implemented in Antidote will
be deployed on hundreds of nodes and tested by Megaload in D5.3. This version of
the Wallet has been developed based on the requirements Rovio had to their Wallet
and implemented by the academic partners to validate Antidote and show how a
solution based on CRDTs would look like.

This will give excellent feedback on how scalable Antidote is.

Megaload will be used to generate the load on the system.

12.6 Big Sets

Basho is working on performance improvements to implement Big Sets (to be re-
ported later in WP2) and for that there will be testing conducted as part of D5.2.
If at all possible Basho will find a client to conduct the testing with, but should
that fail, a test based on what customers have been asking for will be conducted
instead.

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 12

14 PAPERS AND PUBLICATIONS

13 Use of resources

We have been able to re-use a lot more of the Riak code base than originally antici-
pated, which means that we have used fewer resources than planned. Additionally,
all the work done by non-EU residents from Basho will not be charged to the project,
but just donated to it.

13.1 Rovio’s situation

During the SyncFree project, Rovio has been in a challenged position as just one
year ago (October 2014) it was forced to cut 110 jobs and currently (September
2015), it’s again negotiating to further reduce it’s workforce with 260 jobs. This
has unfortunately affected also to the this project, as Rovia has lost people working
in and close to this project. An example of this is the Leaderboard area, which may
in the future be something where Rovio will seek to use external service providers,
rather than building the service stack itself. Rovio does definitely not want to
cancel it’s participation into the project, but the challenges Rovio has had, have
been causing difficulties in the scale of the tasks Rovio can commit itself into.

14 Papers and publications

No publications have directly emerged from the work in WP5. However, the test
infrastructure work we have performed for WP5 has been used by Derflow, which
was published as part of the WP4 deliverables.

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 13

REFERENCES

References

SyncFree Deliverable D.5.1(v1.1), 30 September 2015, Page 14

	Executive summary
	Milestones in the Deliverable
	M24 Update

	Contractors contributing to the Deliverable
	Basho
	Trifork
	INRIA
	UNL
	UCL
	KL

	Background
	Goals and KPIs
	Basho Bench
	Riak Test
	QuickCheck model for core of Derflow
	Adaptive Replication Simulation Tool
	Megaload
	Plans for M24-M36
	Choice of use cases
	Wallet
	Leaderboard
	Ad Service
	Configuration files
	Wallet with Antidote
	Big Sets

	Use of resources
	Rovio's situation

	Papers and publications

