SYNCFREE

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

Project acronym: SyncFree
Project Title: Large-scale computation without synchronisation *
Issue: 0.2
Edited by: Amadeo Ascé (aas@trifork.com)

April 10, 2015

17th Research Framework Programme, ICT call 10, grant agreement n609551

mailto:aas@trifork.com

Contents

1 Introduction 3
2 TUse Cases 4
21 AdCounting e 4
2.1.1 Application description 4
2.1.2 Conflict situations e 5
2.1.3 Inmvariants Lo e 6

2.1.4 Transactions e e e e 6
2.1.5 Divergence 6
2.1.6 Partitioning L z
2.1.7 Operational Requirements z
2.1.8 Security Requirements Lo o 8
2.1.9 Existing State. L 8

2.2 Leaderboard 8
2.2.1 Application description 8
2.2.2 Conflict situations 9
2.2.3 Invariants L e e e e 9

2.2.4 Transactionso 10
2.2.5 Divergence 10
2.2.6 Partitioning 10
2.2.7 Operational Requirements o oL 10
2.2.8 Security Requirements 11
2.2.9 Existing State. 11

2.3 Virtual Wallet e 11
2.3.1 Application description 11
2.3.2 Conflict Situations e 12
2.3.3 Invariants L L e 12
2.3.4 Transactions e e e e 13
2.3.5 Divergence 13
2.3.6 Partitioning 13
2.3.7 Operational Requirements 14
2.3.8 Security Requirements 14
2.3.9 Existing State. 14

2.4 Centralized National Medications and Drug Treatment System “FMK” 14
2.4.1 Application Description 14
2.4.2 Conflict Situations 15
2.4.3 Invariants e e e e e e e 16

2.4.4 Transactionso 17
2.4.5 Divergence e 18
2.4.6 Partitioning L. 19
2.4.7 Operational Requirements oL 19
2.4.8 Security Requirementso 19
2.4.9 Existing State. 20

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

2.4.10 On implementing 2m in Riak 000000 20
2.4.11 Other Challenges in FMK, 20
2.4.12 Further Reading 20

2.5 Music Festival App 21
2.5.1 Application Description 21
2.5.2 Conflict Situations 22
2.5.3 Invariants Lo e 22
2.5.4 Transactions e e e e 22
2.5.5 DIVErgenceo e e e 22
2.5.6 Partitioning L 22
2.5.7 Operational Requirements 23
2.5.8 Security Requirementso oo 23
2.5.9 Existing State. 23

2.6 Business to Business (B2B) Orders oL 23
2.6.1 Application Description 23
2.6.2 Conflict Situations 24
2.6.3 Invariants L e e e 25

2.6.4 Transactions e 25
2.6.5 Divergence e e 25
2.6.6 Partitioning 25
2.6.7 Operational Requirements o oL 25
2.6.8 Security Requirements 26
2.6.9 Existing State. 26

3 Conclusion 27
3.1 Task 2.1 — Support for Conflict-free Replicated Data Types (CRDTs) at the server side 27
3.2 Task 2.2 — Support for CRDTs at points-of-presence 27
3.3 Task 2.3 — Support for CRDTs at theedge 27
3.4 Task 3.1 — CRDT object composition and transactions 27
3.5 Task 3.2 — Divergence control and quality-of-data 28
3.6 Task 3.3 —Security 28
3.7 Task 4.1 — Basic programming model 0oL 28
3.8 Task 4.2 — Extended programming model 28
3.9 Task 4.3 — Final programming model L. 29
A Expectations for the Use Cases 30
A.1 Use Case Requirements description 30
A.1.1 Purpose of this document 30

A2 Extended Questionnaire 30
A2.1 Existing state e 30
A.2.2 Application description Lo 30
A.2.3 Conflict Situations 30
A24 Invariants e e 30
A2 5 Transactions i e e e e e 31
A.2.6 Divergence 31
A.2.7 Partitioning 31
A.2.8 Operational Requirements 31
A.2.9 Security Requirements oL 32

B Other information 33
B.1 Summary of use cases L Lo 33

Chapter 1

Introduction

Description of the deliverable 1.1 : “Natural-language requirements: Initially, the use cases selected
by the project partners will be described informally in natural language. Such a description consists
of an outline of the targeted supporting architecture and a list of the informal constraints the system
must ensure.”

Six use cases have now been described by the industrial partners in the SyncFree Project, Table
1.1. All use cases are distributed databases having one or more data centers acting as central authority.
In some use cases, the distributed database also spans mobile devices being “sometimes connected” -
both with each other and the central authority.

The selected use cases are:

Ref. | Application Provided by | Brief

1 Ad Counter Rovio Web pages and apps are presenting commercial ads
that must be displayed e.g. 100,000 times while not
repeated too often on one device.

2 Leader Board Rovio For each game, records must be available about the
leading player. Some players use several devices.

3 | Wallet Rovio Debiting and keeping track of balance is is critical
for a stable in-game economy.

4 | Shared Medical Record | Trifork Sharing information on a patient’s current medica-

tion between healthcare professionals and the pa-
tient himself.

5 B2B Trifork The ability to present new products, place orders,
and keep track of delivery using tablet computers
is the basis for this B2B application that connects
thousands of stores with the manufacturer.

6 | Festival Trifork 10s of thousands of participants in one of the
world’s largest two week music festivals are concur-
rently rating their experience and the momentary
results are made generally available.

Table 1.1: Use cases.

The use cases are described following a questionnaire defined by the project members (See Ap-
pendix A). After presenting the individual use cases we summarize our observations with conclusion
relating this deliverable results to the other work packages.

Chapter 2

Use Cases

2.1 Ad Counting

2.1.1 Application description

Advertising platforms need to accurately record impressions (number of times an ad has been served)
and clicks, in order to analyze advertising data. They use distributed counters, which are challenging
to implement in a dynamic, fault-prone environment. CRDT counters are a promising solution; the
challenge is to scale to an extreme numbers of users.

Rovio’s Ads service keeps track of impressions and clicks for ads per campaign/ad/country. Typ-
ically these counts have some upper bound after which the ad should not be shown anymore. The
upper bound may consist of the sum of several counters (e.g show the same ad 50,000 times in the
US, 10,000 times in the UK and 100,000 times in total), so it is not really feasible to enforce the upper
bound on the data storage layer.

The main use for the tracking data is to control the rate of ads shown to the users. The campaign
capacity should be spread evenly over the campaign instead of showing all the impressions during the
first hour of the campaign. Therefore, the data must be updated in real time although a good estimate
is normally enough.

The Ads service runs on multiple service nodes, which is shown in Figure 2.1, so in order to avoid
write conflicts each of those nodes has its own document for the impression and click counters in Riak.
This is already a simplified implementation of the counter CRDT. The true value of the counter can
be obtained by calculating the sum of all counters manually.

Even if the current solution works, it is neither very elegant nor easy to maintain. The CRDT
counters will provide a more efficient solution for updating the counters. The ad system does not
need a strict limit for the counter and we can implement an optimistic solution: if the counter value
is less than the limit, show the ad and increase the counter. This may result in showing the ad too
many times, but it is “close enough”. Client applications running on different kind of devices (mobile
phones, web browsers etc) connect to the Ads service in order to determine which ads to show to their
users. The same ad should not be shown on the same device for more than 3 times a day, so the Ads
service keeps track of which device has been shown which ad and when. This data is currently stored
in one document that contains information on the ads shown on a device during the last couple of
days (basically which ad has been shown and when). It might be possible to utilize CRDTs in this
document, but the current implementation has no major issues, either.

Each server node has its own cache representing the counters. The cache could be dropped theo-
retically but in practice, it will be needed. The counters get synced between the live statistics nodes
via Riak. Each counter will have three replicas on the database meaning the value is formed based on
those copies.

The live statistics nodes serve the entire state of all campaigns. They hold a cache for the data
and keep it in sync via Riak. There is a local estimation in place between the synchronizations since
the data is not synced on every update they get from the ad servers.

The database holds two types of documents:

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

Client #1 Client #2
A \\
]
Y
." \\
] LY
[N
¥ Y
Ad Server Node #1 Ad Server Node #2 Ad Server Node #3
Local Cache Local Cache Local Cache
- ~ - - - -
"~ ~a e - i~ -~

Live Statistics Node

Live Statistics Node

Local Cache Local Cache
L 7
\“ , ’
A [
Riak Database (N nodes)

Figure 2.1: Add server.

e Live documents for each day that is still missing the verified data from the analytics pipeline.
Note that there is one document for each live stats host to avoid conflicts in the database level.

e Documents containing the reliable data from the analytics pipeline.

There may be a document for the same day in both analytics documents and live documents,
Figure 2.2. This is a temporary situation which gets corrected once the data import process removes
the obsolete live document from the database. However, the synchronization process in live stats
nodes must be such that it tolerates duplicate documents and ignores the obsolete daily documents.

Live 2014-02-06

Fixed 2014-02-03 | Fixed 2014-02-04

Fixed 2014-02-05

Figure 2.2: Example of temporary situation.

The diagram shows how the document for 2014-02-05 is added to the fixed (data from analytics
pipeline) documents and right after that, the live document for 2014-02-05 is removed. There is a small
window when both documents exist and the synchronization process must take care of the removal of
the duplicates.

2.1.2 Conflict situations

Updating a single counter without any CRDT solution will not work. Two instances making the
update in a sequence of

read — increase — write

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

at the same time will cause the updates to overwrite each other or at least make the sibling
resolution extremely difficult and unreliable. For example the sibling conflict, shown in Figure 2.3 and
described below:

1. Node A reads value N from the database.

2. Node B reads value N from the database.

3. Nodes A and B increase the value to N +n4 and N + ng.

4. Nodes A and B write the values to the database resulting in two siblings.

5. Node C reads the value from the database — two siblings with values N +n4 and N + np.

6. Node C is unable to resolve the correct value of the counter with the obtained information —
data is lost.

Client #1 increment value N
by Na
increment value N Datastore with
by Nb value N.
Client #2
Read N and get
sibling values N+Na
Client #3 ., N+nb

Figure 2.3: Sibling conflict.
Note, this issue has already been solved with the simplified implementation of CRDT counter.

2.1.3 Invariants

The value of the counter (how many times the ad has been shown) should not exceed the limit. The
invariant does not need to be strict since the extra times don’t really cause any significant harm.
2.1.4 Transactions

N/A

2.1.5 Divergence
Expected latency

The latency requirements are not very strict in the ad case. The counters should get converged within
some seconds in normal operations to get proper limits in place. However, no real harm is done even
if there is a longer split in the cluster.

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

Offline mode

There is no real offline mode but the service nodes must be able to operate even though there is a
cluster split in the database layer. For example, if there is no connectivity between two data centers,
the service nodes must still be able to operate normally. The counters will be converged as expected
when the data centers have the normal connectivity between them.

Limits to the degree of temporary divergence

It is ok for us if the counter value is “wrong” in two ways:

e Some updates are missed entirely. This is the worse type of discrepancy since it will mess up
the final reporting. If the probabilistic nature of the value is unknown (e.g. varies as a function
of the server load), the final values may have an unexpected differences to the correct values.

e Updates from different nodes are delayed for a while as the server nodes only sync there counts
periodically (every one 1min) but the values are correct eventually. This case is an easier one
since the counter is used for checking the limits in real time but the limit does not need to be
enforced strictly its ok if we serve slightly more than the limit .

Divergence visibility

There does not need to be visibility to the divergence in the system. Obviously, there may be a need
for identifying if there is a case of a longer cluster split (several hours) but that can be detected from
other monitoring utilities.

Divergence guarantees

A mechanism for guaranteeing that the data is not more divergent than some specific amount would
reduce the issues with showing ads more than needed when there is a cluster split.

e It would be interesting if the CRDT system could give an estimate of the number of missing
operations on the document. However, the number should not overestimate the real value.

e The latency of the reads/writes is more important than the correctness of the value in general.

2.1.6 Partitioning

Since the impression and click counters are recorded per country, global consistency of the counters
across data centers could be lower but a higher consistency is required in the primary data center for
the country the counter belongs to. This would mean that the reports for global campaigns would be
consistent with some delay but this shouldn’t be a problem.

2.1.7 Operational Requirements

e The reason for EC: Availability and performance.

e The application is running on a data center. There is a small possibility of running it on multiple
Data Centres (DCs) later but one DC is enough for now.

e There are three replicas of the data in the database level but the cached values on the server
will increase the number of replicas to “tens”.

e The data is fully replicated between the cached instances.

e The number of objects in this use case is currently running in scale of tens of thousands. The
count may increase up to hundreds of thousands later.We need 3 counters for each ad in each
campaign so the object count will be Number of campaigns * number of ads in the campaign *
3 (each ad has 3 counters associated with it , impressions , clicks and downloads)

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

e The object is basically a single counter meaning that the size is in bytes. However, the current
structure in the database level is such that there are tons of counters aggregated into a single
document.

e The database is a single big database on the architectural level but it consists of several nodes
hosting the different replicas of the data.

2.1.8 Security Requirements

e There is no access control on the lower levels of the system. The end users won’t be able to do
anything else than increase the number of shown impressions etc. for the specific user.

e All actions are audited to a flat data storage from which a batch job gathers the data and
updates the counter documents accordingly. This process ensures the data integrity on daily
level but the process cannot be implemented in real time due to the volumes of data. The batch
jobs are run on a nightly basis and they take multiple hours to process and aggregate events for
a day. The process can also be used for rolling back malicious operations in the system if there
are any.

2.1.9 Existing State

The application is running in production with an implementation that handles the conflict resolution
with a custom CRDT implementation for the counters. Each replica on the application level are
written to a separate document and those documents are merged and the aggregated counts are
stored in memory the loading phase (when the document is read from the Data Base (DB) this happens
periodically every one min. currently). In practice, it is similar to the counter CRDT implementation
on the DB layer.

There have been some challenges around how to verify the data integrity if something catastrophic
happens (someone deletes a live document etc.). The current implementation handles those issues
with a daily-based document structure and a feedback loop from the more reliable analytics data.
Analytics events are fired for each ad served and are stored in flat files in s3 . The analytics data
contains information about every ad delivery and is the most reliable source of information in the
system. This structure will ensure that the documents will be in good shape eventually and the data
can be corrected if there is a need to.

2.2 Leaderboard

2.2.1 Application description

Leaderboards are used in games to provide information on who are the best players globally (and often
also domestically) and how the current player ranks against other players. Rovio’s Leaderboard service
provides different kind of leaderboards for games, Figure 2.4. The default type of leaderboard is level-
based which means that the high scores are stored by level, so each user has one document per each
level passed in a game. Each level score document contains the user’s high score, (estimated) rank,
matchmaking and percentile indices and some other additional properties the service itself doesn’t
care about (e.g. stars, lap time etc. depending on the game).

Since the leaderboard should always contain the highest score the user has achieved in a level,
custom conflict resolution based on the high score is required. With CRDTs the conflict resolution
could be done so that the maximum or minimum score wins, and the rest of the properties are taken
from the update that contained the new score (no conflict resolution required).

The leaderboard service supports the following operations:

1. Send score (adds or updates the high score of the user)

2. Get ranking (returns the user’s ranking in a level)

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

Client 1 Client 2
Leader_board Leaderboard Leaderboard
Services Services Services

Riak N-node cluster

Figure 2.4: Wallet Service Architecture.

3. Get matching (returns a list of user IDs whose ranking is close to the requesting user)

4. Get leaderboard (returns the leaderboard for top ranking users, user’s friends etc.)

2.2.2 Conflict situations

The same user sending a high score for the same level concurrently is quite unlikely but possible if
a level can be passed very quickly or if the same user account is used from two different devices at
the same time. In this kind of situation the best score should be persisted so the last write wins
resolution (which Riak provides) will not be sufficient. We have games that can be played offline and
they sync their score when they get a connection.In that case the device stores that scores of different
levels locally when offline and then update all the scores in arbitrary order which also could result in
conflicts.

Currently siblings and a custom conflict resolver are used for ensuring that no data is lost. This is
a slightly risky approach with game clients that may not always behave “nice” (e.g a game client and
its data can be copied from one device to another, leading to concurrent access to the same document
which may lead to a sibling explosion if hundreds of devices generate siblings in Riak).

2.2.3 Invariants
Identification of invariants

The level score document should always reflect the highest score the user has achieved in the same
level, and there should only be one high score per user per level. The rest of the score document
should follow the score, so no other properties need to be considered when doing conflict resolution.

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

It’s OK for the leaderboard to be eventually consistent.

2.2.4 Transactions

N/A

2.2.5 Divergence

Expected latencies

Latencies are not that important in the leaderboard use case as the player’s own score is read from his
or her game state / profile when displayed in the game and the leaderboard is only used for determining
rankings and best matches for players to compete against.

Offline mode

N/A

Limits to the degree of temporary divergence

N/A

Divergence visibility

N/A

Divergence guarantees

N/A

2.2.6 Partitioning

The game clients usually use the same data center for every game session so global consistency could
be lowered and higher consistency required within the same data center. This would mean the global
leaderboard would be updated with a longer delay than the country-specific one but that shouldn’t
really matter.

2.2.7 Operational Requirements

The reason for EC: Availability and performance.

The application is running on a single data center. There is a small possibility of running it on
multiple DCs later but one DC is enough for now.

There are three replicas of the data in the database.
There is full replication for the data.

The expected number of objects per game follows the formula number of users / 30 (one database
entry contains 30 levels) x number of levels. So a game with 100 levels and 300 million users would
generate 1 billion objects in the database. Since there will be multiple games using Leaderboard
the number of objects will eventually be counted in hundreds or millions or billions.

The expected object size is around 150 bytes, stored as binary json at the moment.

Everything is stored in a single database architecturally. However, the database is built on
several instances and possibly on several DCs at some point.

10

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

2.2.8 Security Requirements

e There is no access control on the lower levels of the system.

2.2.9 Existing State

The service is currently being prototyped but not yet used in production.

2.3 Virtual Wallet

2.3.1 Application description

Virtual Wallet applications manage virtual economies.The clients keep a local state and also do credits
and debits to their local state but the clients local state cannot be trusted. Such applications require
massive scalability and very robust security guarantees. To ensure very low per—transaction financial
cost, as required for use at a ne granularity (nano—transactions), some consistency constraints may
need to be temporarily relaxed, but not others. The challenge is to maintain correctness at an extreme
scale, i.e., ensure money does not vanish nor is created out of thin air, despite data fragmented across
numerous replicas, lost or duplicated information, long—term disconnection, etc. Rovio’s Wallet service
provides a delivery mechanism for ingame items and manages the user’s virtual currencies, Figure 2.5.
A single wallet contains balances of the virtual currencies the user owns, vouchers for the ingame items
(e.g powerups) the user has purchased but have not been delivered yet, and a transaction log that

lists the most recent transactions for the wallet.

Client 1

Wallet Services

Client 2

Wallet Services

Wallet Services

Riak N-node cluster

Figure 2.5: Wallet Service Architecture.

e Balance consists of a numerical value and currency name (e.g Crystals: 150 or Euro: 2.45).

11

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

e Voucher consists of a unique voucher ID and item details (item ID, name etc). Vouchers are
removed from the wallet when consumed.

e Transaction consists of a unique transaction ID, timestamp, transaction type and whatever extra
data is needed for the transaction type. Transactions are only removed from the wallet when
they're archived (we cannot keep all the transactions of a wallet in the same doc due to the size
constraint and thus we archive the transaction for a wallet after a max size is reached and put
them to another storage and remove them from the document a.).

Since there’s real money involved, losing data is not an option and custom conflict resolution logic
is required. The current conflict resolution logic rebuilds the wallet based on the transactions. With
CRDTs the balances could probably be represented as a map of currency name and value counters,
and the vouchers and transactions as sets.

The Wallet service supports the following operations:

1. Purchase item (adds voucher)

2. Purchase virtual currency (increases balance)
3. Consume voucher (removes voucher)

4. Consume virtual currency (decreases balance)

All of the operations add an entry to the transaction log.

2.3.2 Conflict Situations

Purchasing an item that the user should be able to purchase only once (e.g removing ads from a game,
purchasing a level package for a game) multiple times would cause problems as we would charge the
item multiple times but would only be able to deliver it once.

Consuming the same voucher multiple times would cause issues if it resulted in delivering the same
item multiple times (the user would have paid if only once). We could, of course, decide to take the
hit and give the extra items for free.

Consuming virtual currency in a way that balance becomes negative would also cause issues unless
we decided to take the hit and round it up to 0.

A conflicting use case is:

1. Customery, purchase an item from device;.
2. Customery tries to consume the purchased item from both device; and devices.

Currently, it is ensured that items can be consumed only once by using conflict resolution. With
CRDT solution this would be solved by using sets which would not create siblings.

2.3.3 Invariants

The wallet service has the following invariants:
1. The user’s balance should not become negative.

2. The user may set a limit for how much real money she may spend on items per day / week /
month, and purchases should not be allowed after this limit has been reached. The amount of
money spent can be calculated pro-grammatically from the transactions.

3. Some items may be purchased only once, so a voucher for certain items should not be added to
the Wallet more than once. Whether an item has already been purchased can be checked from
the transactions (but there could as well be a separate list of IDs of this type of items that have
been purchased in the Wallet).

12

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

There are some things to consider in the implementation:

e Can the balance get negative in the end?

e Can the user use the vouchers multiple times?

The balance, the vouchers and the transaction log should be “linked” (stored to the same document
etc.). There won'’t be an offline gaming mode for the monetary transactions and therefore the problem
is not client related but mostly raised due to cluster splits, data center failures etc.

The balance (and preferably the vouchers, too) should always be in a consistent state. The trans-
action log could be eventually consistent since it’s not shown to the user and even if it was, it not
being up-to-date wouldn’t cause any real harm.

2.3.4 Transactions

The transaction log needs to contain entries for all operations where real money is involved. De-
pending on how the transaction log is implemented (as a part of the wallet object itself or as separate
document(s)), there might be a need to update more than one object atomically. If the transaction log
is in separate document(s) both the wallet object and the transaction log object need to be updated,
either at the same time or so that the transaction object is updated right after the wallet object.

2.3.5 Divergence

Expected latency

The latency should not be very high as the user should see the changes in his/her wallet as soon as
an operation (e.g a purchase) has been completed.

Offline mode

N/A

Limits to the degree of temporary divergence

There are some limitations on the divergence and some compromises must be made if EC is being
used. A user could get a negative balance to the account if there is a split in the system and it lasts
long enough. However, it may be acceptable to reset the balance back to zero in such cases if the split
is something that the users cannot trigger.

Divergence visibility
The audit logs can be used for investigating potential issues in the data validity afterwards. There is
no need for a real time visibility of the divergence.

Divergence guarantees

In some scenarios it would be useful to have a guarantee that the users would not be able to e.g. use
their balance several times. On the other hand, it is not practical to limit the user actions because
of that. Any user triggered divergence should be minimized. For example, running multiple devices
on the same account must not cause divergence by design. This can be prevented with an optimistic
locking pattern.

2.3.6 Partitioning

The clients usually use the same data center for every session so global consistency could be lowered
and higher consistency required within the same data center.

13

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

2.3.7 Operational Requirements

e Reason for EC: Availability and scalability.
e The application is running on a data center, most likely on multiple DCs at some point.

e There are three replicas of each wallet and very short living temporary copies on the server
instances when the updates take place.

e There is full replication for all the data, always.
e The expected number of objects is tens-hundreds of millions.

e The document size is from less than a kilobyte up to several kilobytes. The document may grow
very big (tens of kBs) for some heavy users.

e Everything is stored in a single database architecturally. However, the database is built on
several instances and possibly on several DCs at some point.

2.3.8 Security Requirements

e Only admin users can do arbitrary operations on the accounts. Those operations are audited.
Normal users will have an access to their own account but through restricted Application Pro-
gramming Interface (API) that allows only specific types of actions, such as “make a purchase”
or “consume a voucher”. Those actions are validated. Operations such as increasing balance
because of a real money payment, will always be validated against the payment provider.

e All operations are audited and there is need for a way to view the operations done on a single
account. Corrective actions can be made based on that information.

2.3.9 Existing State

The product is currently running in production with an application level conflict resolution. It is not
using database level CRDTs right now. The most challenging parts have been around the conflict
resolution but it is relatively easy to validate on the unit test level.

2.4 Centralized National Medications and Drug Treatment System
“FMK”

2.4.1 Application Description

At the surface, this is a quite simple online system: for each person, maintain a list of current
treatments, which may involve one or more prescriptions, and additionally a set of events that has
occurred for the given treatment, Figure 2.6.

Not all treatments require prescriptions. I.e., the doctor can tell you to drink water, or take
calcium tablets which you can get without a prescription, but he may make a prescription on these
too. Everything prescribed will be in the system. Events are things that happen in the real world,
such as a drug being administered to a patient by a nurse, or a drug being handed out at a pharmacy.

The wide adoption of this system builds upon a successful cross—sectoral standardization of medicine
workflows and closely related concepts. The system is not an electronic health record with specialized
information such as test results, measurements or the like.

One of the primary design criteria for FMK is to provide high availability. The system is in use
24x7, and currently has 40+ integrations with other healthcare systems, most of which are required
to use Shared Medical Record (FMK) as the primary storage for relevant medicines data.

Though being simple at the high level, much of the challenge lies in making the system highly
available, scalable and secure, supporting a wide range of use cases (as well as old APIs), all the
while making sure that data that flows in from many of the connected systems has some measure of

14

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

Private

Docfors
on Call

Pharmicies /

Figure 2.6: FMK general overview.

consistency. In many cases data “updates” are made on the basis of a previous“query” to the system,
and the system needs to have a model that captures conflicting updates. As such, this seemingly simple
system ends up being surprisingly complex, especially because of the high availability requirement.

In context of making healthcare decisions, it is much better to have some information than none.
It is better to have old information than none. Events that happen “outside” the system have in-
disputably happened, so the system needs to ingest them regardless of consistency. All this leads
us down the road to a CRDT-like data model deployed on Riak (dynamo-style eventual consistency
w/write-conflict capture). The central patient information data model is essentially a stateful CRDT,
that exposes a semantic model for write conflicts. Ideally, there would be a replica of the entire
servicet+dataset in each major geographical region/hospital, which is still an eventual goal. Writes
should be propagated “as soon as possible”, but lack of such propagation - WAN failure - should not
render the system unusable.

Network Topology and Architecture: The system is made up of geographically separated
data centers, set up in master-master replication mode, so any DC can handle any request, Figure
2.7. The client systems are systems providers for GPs and hospitals as well as a web based system
that provides citizen access and acts as a backup for the professional systems. Each client has affinity
to a given primary DC, so all requests from a given client use only one DC, as long as it’s available.

2.4.2 Conflict Situations

Because of the asynchronous client system interfaces, and distributed data centers, two doctors can
prescribe conflicting medicine to the same patient simultaneously. A real-life example of this is right
after a patient is discharged from hospital and visits his GP. The medicines that a patient was pre-
scribed in the hospital are sometimes carried over from the hospital patient journal to FMK after
his discharge, and can coincide with the prescription of new medicine by a GP. Because the system
is EC, it is not always visible, that all updates have not yet propagated throughout. This means
that conflicts can be detected after the conflicting changes were made. “Conflicting medicine” may
be multiple prescriptions of drugs containing the same active substance, or two drugs which interact
poorly. Optimally, a doctor making or adjusting a prescription has full overview of the patient’s

15

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

Client 1 Client 2

Primary e rimary
Failover " ""*-Failover
Datacenter/l.--"" Da&qtirz
Web Web
Service Service
2-way async replication
Database Database

Figure 2.7: System overview.

existing prescriptions when she does so.

Acting on Conflicts

When developing the present implementation of materialized views, we found a need to detect Riak
objects with conflicts (i.e. with siblings). Conflicts may appear in ways not triggered by client reads
or writes, so objects which are seldomly or never read can exist for a long time in a non-resolved state.
At present there is no mechanism for querying Riak for conflict-ridden objects and thus to consistently
act on conflicts; a solution (in the form of a new feature) was suggested on the riak—users mailing
list, using Riak Secondary Indexing (2i). Alternatively, this problem might be solved on top of the
proposed “secondary messaging”, by allowing a conflict observer to be registered, e.g. on a per-bucket
level.

2.4.3 Invariants

Since availability and partition tolerance are paramount, conflicts cannot be prohibited, but are instead
corrected. There is no “strong invariant” in the system meaning the prohibition of data conflicts.
The closest thing is that automatically resolved medicine cards must be marked as such (with a
“not reviewed” flag) and stay so marked until reviewed and unflagged by a healthcare professional.
Prescriptions should not be created using medicines that is not on the list of permitted medicines.

Merging multiple sets of prescriptions always converges towards the same set - no matter in which
order the operations on the prescription set was done. A single data center has read-your-writes
consistency.

FMK Merge

One of the interesting issues in relation to SyncFree is how FMK does merge, and which invariants
need to be maintained. In general, the system needs a 2-dimensional temporal model, as it allows “old
versions” to be updated to reflect that the system is not the truth. The truth is out in the real world.
It could be that wrong information was entered into the system (maybe because a secretary entered
information from an incomprehensible voice dictation), then the information is updated/decided upon
by a third party, after which it needs to be possible to go back and correct the original input. Another
possible conflict occurs in the case when a patient is involved in several treatments (at different
facilities or with different health care professionals), but the drugs prescribed for these treatments
have undesired interactions. Such “drug incompatibilities” cannot reliably be described as system

16

http://en.wikipedia.org/wiki/Bitemporal_data

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

invariants; they can to some degree be flagged by various external expert systems. In the end, the
system can only flag non-causal updates, and let the domain professionals decide. One of our working
rules when working with drugs is to not make decisions in code, but help the domain professionals to
make the decisions.

The structure of a person record is a composite semi-CRDT like this:

e person data (name, id, address, ...)
e treatments [CRDT set]

e prescriptions [set]

e prescription [stateful]

e prescription events [add-only]

e other events [add-only]

There is a life time on the order of a few years on all closed treatments; after this interval, they
are deleted and no longer shown to users and client systems.

The core “problem” is what happens when a prescription record is updated w/ conflict, as it
cannot be completely reconstructed from the corresponding “prescription events” (that might have
been a better model to be completely ops-based). Prescriptions are not deleted but “hidden” (marked
deleted). As mentioned above, in case of write conflicts, we do a “best effort” merge, and flag the
record as in need of review. End-user systems are then required to visibly signal this status until a
professional review has been performed.

2.4.4 Transactions

ACID transactions are avoided throughout the system, because of the high availability requirement.

A common use case involves a pharmacy querying for prescriptions that a patient will be picking
up soon (prescriptions stored in the system can be tagged with a pharmacy where it is to be fulfilled).
Since this is a very common query, we would like to be able to service such queries with a materialized
view, rather than a coverage query which usually involves all machines in a cluster (Riak 2i). This how-
ever, is difficult as Riak provides no cross-object consistency. The atomicity/consistency we need can
be described as a delayed-consistency materialized view: whenever a pharmacy-prescription relation
is added, updated or removed, that change will eventually and within reasonable delay be reflected
in the view. (This implicitly addresses the “isolation” part as well: seeing the updated prescription
but an unupdated view is acceptable, especially since no high-level operation refers to both.)

Adding transactions to Riak would allow updating a materialized view like this, but at the same
time reduce the availability, since an update now involves twice as many nodes. With more dependent
updates, this can quickly require the most of cluster to be up to perform updates. It would be very
attractive and a great research target to have an alternative model for “causally dependent updates”
in which events (ops in CRDT-terminology) could be reliably - albeit eventually - delivered to other
entities inside the storage system, such sends being triggered by writes.

In the case in question, when a prescription is added/updated for a “patient object”, imagine
a reliable message <add-prescription P >to the “pharmacy object” being enqueued as part of the
update. The patient update operation can return success to the caller as soon as the message is
reliably enqueued, as it is guaranteed that it will eventually be delivered to the “pharmacy object”,
even if the node(s) hosting it are currently inaccessible. Especially when the target of such an eventual,
but reliably guaranteed, message is a CRDT, this model seems very attractive as an alternative to
traditional transactions because it will in many cases be able to gracefully handle out-of-order delivery
of ops.

Also, by avoiding transactions spanning multiple entities on the critical path this could lead to sig-
nificantly better availability than a transaction based model. A guaranteed message delivery system

17

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

would requires some kind of transactions internal to the storage cluster, but those can be decou-
pled from the primary read/write operations. Issues can arise if too many messages end up being
undelivered for an extended period of time.

A reliable messaging system is much easier to implement if the target of messages is known to
be idempotent, because the system only needs to guarantee “at-least-once delivery.” The intersection
of CRDT/messaging also brings to mind all the work being done in the area of Command Query
Responsibility Segregation (CQRS). Likewise, a good reference for inspiration in this area is Pat
Helland’s Life beyond Distributed Transactions: an Apostate’s Opinion. So, I propose we do research
into a weaker consistency control mechanism based on CRDTs and reliable messaging as an alternative
to transactions.

2.4.5 Divergence
Expected latency

There are different latency between data centers and between clients and data centers. In normal
operating mode, the latency between data centers should be below 5 minutes. The DC-client latency
depends on the client system ranging from milliseconds to days.

Offline mode

In normal operation, a hospital can temporarily take ownership of a patients data, while he is admitted.
When the hospital has this ownership, it operates offline, until it returns ownership to the central
service. In a failure scenario, some client systems must also be able to run offline without connection
to a central service.

Limits to the degree of temporary divergence

For example, when a doctor prescribes a drug, the prescription should be in the pharmacy system
before the patient arrive at the pharmacy to pick up the medicine. In practice, this seldom take less
than 15 minutes, which is the delay that the system is engineered to support in the normal operating
scenario.

Divergence visibility

It would be very useful to have an indication on how divergent the different components are for a
given patient. When a doctor sees a patient’s data, it is interesting to know if the latest data from for
instance a hospital is present. This could be represented by a timestamp for which the client knew
that all other core-components had successfully completed replication of incoming data. There could
always be delayed data from the unbounded set of peripheral client-systems. Ideally, there would be a
timestamp available from all relevant components telling when they last synced data for this patient.

Probabilistic measurements on divergence would be relevant for the technical staff, but provide
little direct value to end-users.

Divergence guarantees

For the usual high availability use cases of providing access to a patient’s medication data, it would not
be relevant to have mechanism that guarantee that data is not divergent because enforcing consistency
requirements reduce availability.

For the offline data analytics use case, it could be relevant to wait with analyzing, until all data
is guaranteed to be sufficiently up-to-date. A probabilistic value would be better than nothing, but
would increase complexity, because late updates would need to be detected and handled by for instance
redoing the analysis.

18

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

2.4.6 Partitioning

The fundamental level of consistency is the patient. Data is modelled per patient. In addition to that,
client systems often fire off a string of operations on the same patient in a short interval of time, and
need read-your-writes consistency. Therefore, the network is partitioned in data centers, such that a
given client system is usually operating on the same network partition. Within this partition (data
center) the system (almost) provides read-your-writes consistency. This is not the case for the global

system.

2.4.7 Operational Requirements

Reason for EC: Availability.

Where is the application running: in infrastructure, in a small number of data centers (2-5).

How many replicas: 5-20.

Full replication or partial replication: Full replication as for medicine cards.

The expected number of objects:

— Millions of medicine cards.
— Millions of request-log entries (14-day history).

— Billions of audit-log entries (a few years of history).
The expected sizes of objects:

— Medicine cards: On the order of 10KB.
— Request-log entries: On the order of 10KB.
— Audit-log entries: On the order of 1KB.

Total size of data set:

— Medicine cards: On the order of 100GB.
— Request log: On the order of 100GB.
— Audit log: On the order of 1TB.

Rate of growth?

— Medicine cards: Unknown.

— Request log: On the order of 10GB/day. Requests are deleted after 14 days.

— Audit log: On the order of 100MB/day

Partitioning of the database: Given that any citizen can be treated in any part of the country
at any time, the medicine card database can not as such be split into independent parts. On the
other hand, no consistency is assumed across person IDs. The set of objects is split into data
of different flavors (domain data, write-twice request log for caching purposes, write-once access

log for auditing purposes).

2.4.8 Security Requirements

Doctors are only allowed to see information regarding their patients however the system will not block
access to other patients records. Nonetheless, access are logged to allow government operators to

manage unallowed access.

Access control and granularity: There is an operation/rule matrix determining which operations

are allowed for a user.

19

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

e As a main rule, there is no per-object access rule - any doctor or other health care professional
can access any citizen’s data at any time (as explained elsewhere). There is legislation, though,
against accessing data for anyone who is not in your care at the time. Access can therefore be
verified after-the-fact.

e Information flow control: all the operations produced in the system are logged and government
operators access them to detect problematic behaviors. This management is done out of the
actual system.

e Auditing: An audit log is maintained.
e Rolling back offending updates:
The domain contains an “invalidated” state for most entities where this could be relevant.

Idea/Challenge #1, Causally Dependent Updates

2.4.9 Existing State

This is a use case involving eventual consistency in Trifork production systems.

2.4.10 On implementing 2m in Riak

Here’s some text for in Riak—speak describing how this could be done: “2m: secondary messaging”.
When an object is stored, it would be nice to be able to reliably deliver some message to a third
party, e.g. to update a materialized view. This could be done, much like 2i, by storing the “intent
to send” as part of the same write that writes the object and the index. Then a post-commit hook
will do the send, and when the message is acknowledged, the “intent to send” should be deleted at
all participating nodes. Overwriting an object does not overwrite/delete old “intents to send”. A 2m
subsystem will periodically scan for “intent to send” objects for which acknowledgments are past due,
and re—transmit messages. Since intents are stored based on preflists, a “preflist leader” should be
responsible for the intents pertaining to that preflist. Delivered (acknowledged) messages need to be
represented by a tombstone, or a similar mechanism. These can be reaped on a per-preflist basis by
keeping track of the oldest undelivered message in such a preflist, reaping intents that are older than
that. If the target of these messages are not just any message receiver, but an idempotent ops-based
CRDT defined within the system, then re-transmits should be a non-issue. Sends to outside agents
may never succeed delivery, but would still be an interesting use case.

2.4.11 Other Challenges in FMK

As part of the security policy, all operations are logged in an audit trail. This is what generates most
of the data: the core dataset is on the order of 500GB, but the audit logs are an order of magnitude
bigger. The audit logs needs to be indexed for various usages. For example users (citizens) have online
access to the audit trail for their own data, and part of the security model depends on after-the-fact
review of audit logs. Some of these access patterns are best dealt with using analytics style batch
processing, whereas online access to a user’s own audit trail would be nicely dealt with using a causally
dependent view as suggested above.

2.4.12 Further Reading

Source code for merging medicine cards Medicinecard Conflict Resolver (source repository).

Danish doc on how merging is performed: https://docs.google.com/document/d/1uJw-GHvu380zgibG5_
ZtFoCGYGszcPS7ykZREDLiDW8/view#

General public information on FMK (Danish) Medicinecard

20

https://docs.google.com/document/d/1uJw-GHvu380zgibG5_ZtFoCGYGszcPS7ykZR5DLiDW8/view#
https://docs.google.com/document/d/1uJw-GHvu380zgibG5_ZtFoCGYGszcPS7ykZR5DLiDW8/view#

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

2.5 Music Festival App

2.5.1 Application Description

This application intends to maintain participants of large event/gathering informed of the different
activities in the event, progress and ratings for each of the acts as the event progresses. The participants
may get this available information and take part in some of the voting activities, which generate the
ratings, by using their own devices, e.g. smart phones, tables and laptops.

At large events where thousands of people gather, the internet-connection from mobile devices is
often degraded to non-existent. Therefore, the Roskilde app is designed to function in a completely
off-line scenario — including the exchange of information. This is done on a P2P-basis (Peer—to—
peer (P2P)) by data synchronizing two devices using direct communication based on bluetooth or
wifi—direct.

This “sometimes connected” scenario, is a perfect match for CRDTs, and the Trifork Relai product,
Figure 2.8.

Trifork Ty
Relai -

P

Trifork Relai Sync
TCF | Elustaoth
ar WiFi Direct

Trifork Relal sync ——, +*
TEP 7

Firewall

o i e o

Figure 2.8: Trifork Relai.

Requirements

The app is extended with features each year. For the 2014 version, up- and down-votes for concerts has
been suggested. Given the decentralized grid-type network topology, and the high number of devices,
this use case would likely require aggregating the votes in order to achieve sufficient performance and
to satisfy space requirements. At the same time, sufficient information should always be present, so a
vote is not counted twice. Because no user authentication exists in the app, every device with the app
installed is considered an actor, and given a unique actor-id. Good concerts will get positive votes,
while bad concerts may end up with negative votes.

21

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

Non-functional

Roskilde Festival is a 2 week event, so the system should be massively available during this time, and
in the days before. Afterwards, the system is very infrequently used until next year’s festival. This
gives special operational requirements and possibilities. I.e. long service windows outside the festival
days have no impact.

The app must be very easy to use. For ease of use, no (additional) user registration or login process
can be required from the user.

2.5.2 Conflict Situations

Conflicts may arise, if the same information is updated from multiple devices. This has not yet been
possible in this use case, as both user created content, and data pushed from the central server was
immutable.

In the new up/down vote use cases, votes are cast from multiple devices on the same concert at
the same time, giving different views on the performance of an artist.

2.5.3 Invariants

In the up/down vote use cases, a vote on a concert from an actor (device) must be counted precisely
once. After data syncing two devices, all information from both should be present at both. However, if
this is impractical due to physical constraints on data size and communication bandwidth, the amount
of data transferred could be limited.

A proposed solution to limit the space is to exchange “randomly” only a part of the “new” infor-
mation you get to the other peer. Somewhat related to lightweight probabilistic broadcast. In this
case the invariant is that the combination of the peers is correct. This also impact divergence that
will be somewhat reduced.

For the actor counting votes, all votes should be included in the count, if they were either cast
by the actor himself or other actors that have since synced with this actor after vote-casting. Votes
should be relayed “transitively” through chains of syncs.

2.5.4 Transactions

No.

2.5.5 Divergence

The latency in offline mode is high, given that people need to enable synchronizing in their apps and
be within range off pair-able devices.

Precisely measuring divergence in a master-less network with an unbounded set of devices that are
joining and leaving all the time is at best difficult - possibly impossible. A probabilistic value would be
fine. A practical measurement could be number of nodes synced with in the last hour. L.e. counting
the number of different devices that a given device has synced with, and that they have synced with
a.s.o. for the last hour.

There are no limits to the allowable divergence, but perhaps there should be a warning, if the
centrally pushed information is out of date.

2.5.6 Partitioning

People tend to group physically at a music festival, and there is a pattern of sleeping at night (or
in the morning) , and being at the concerts during daytime. The grouping of people in recurrent
groups could potentially be used to dynamically structure the mesh network into a hierarchical, tiered
network. The advantage of a hierarchical model is the ability to have nodes handing off data to higher
level nodes for aggregation, which would be very usable for votes for instance.

22

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

2.5.7 Operational Requirements

This application uses EC to be available during offline periods. The application runs on mobile devices,
connected - sometimes - to a central server. Multiple data centers could in theory be used centrally,
but this is not necessary given the load and offline capability. Data is replicated to all participating
devices, which are potentially one or more pr. festival guest. L.e. in the range of tens of thousands.

e The number of objects could be a couple from each festival guest - I.e. hundreds of thousands.
However, it has been much less so far.

e The object universe is flat.

2.5.8 Security Requirements

Because the app must be easy to use, no login is needed. Instead the app auto-generates a userid
upon first startup. Information flows freely between apps. It is possible to centrally monitor the camp
events sent, and delete inappropriate ones.

2.5.9 Existing State

The application is an existing app developed for Android and iOS. It allows festival participants to see
the concert schedule and other centrally updated information as well as distribution of user-created
content.

2.6 B2B Orders

2.6.1 Application Description

It enables the shop employees to see a catalogue of upcoming clothes on a tablet device, and place
orders on boxes for future delivery. This functionality is made available for the same shops to both
shop staff as well as for shops managers, managers of chains of shops or managers of entire markets.
Orders are modelled as a CRDT Grow-only set (G-set), which is updated by adding event objects.
Event objects are immutable, contain data and metadata about the event and can never be deleted.
Example:

Key:
shop123_order234
Events:

shop user 345 created an order for a box of pants
order was received by serverXYZ and started processing

order was rejected by serverXYZ because out of stock

An overview of the current implementation of the system is shown in Figure 2.9.

Causality tracking can be added by having each event point to the existing set of event-ids, that
were already present when it was created. This event G-set model seems robust and general.

After a shop employee has given an order, it can be seen in the app, but no longer changed
through the app, and if the shop employee want to cancel it or change anything, they need to contact
the manufacturer customer support and ask them to fix it for them. The manufacturer can change
an order by adding a new event to the order with the corrections, Figure 2.10. The change depends
on the current state of processing. Le. if the boxes are already loaded on a truck and sent, fixing an
incorrect order is different from fixing an order, that has not yet been processed.

23

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

e

= 3
Admin
Uity Intisrtace Manitoring
Frontend '
STYLELABS

‘——\ Sysiem ‘\\
I{ |" - Command Admin
| Dispalcher Warfaes =g mue Push
n ifications
| aDAM Wb LI Senvice Nalificanon |
Sarver
‘ Ordars, Budgsts

Ccmmsndl
Purchase Queus
oy o
\ | I 1 Inice
mport Handler
Il'nl \ . RESTAP| [
& F Master Data
| 7
\
Il'.ll H ﬁ Ordar Handlar Riak Clustes \ J
\ LB} L]

Riak Aelai
Sync

Catalog Event

Riax Relai !
Handler

— —
1|\ Chunk Sener '|| o
\ AD e, P I A
| =SSN s
\ |\ \\\ e Riak
T

/ Dratastors
User
User

Stye Variant Replicator Sessions _— —
Stock Service

- \\

<¢ Codehouse

—

Figure 2.9: .

async, 2-way, partial Al orders
data replication

Figure 2.10: Partial data replication.

2.6.2 Conflict Situations

When an employee creates an order on his tablet in offline mode, it is obviously not sent to the
manufacturer until he is online again. Meanwhile, the item may go out of stock, or other employees
ordering for the same shop, not knowing of this new order, can potentially order the same item again.
In theory, it is not possible to distinguish redundant orders. In practice, some rules can be applied to
detect possible redundant orders - i.e. are they orders for the same item, approximately same number,
same delivery date, and so on.

Manual resolution processes exist, which are based on contacting the manufacturer customer sup-
port.

24

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

2.6.3 Invariants

All employees related to the same shop, should always see an up-to-date picture of that shop’s orders
with respect to the data that is accessible after synchronizing devices.

Because we want to enable offline, we compromise on the invariant. It is ok to update the list of
orders as soon as the information has been able to pass through the system.

2.6.4 Transactions

Shops also have a budget. When multiple employees order at the same time, they may exceed this
budget. This is handled because the manufacturer back—end system serializes access to data for a
given shop . Read-your-writes consistency is enforced by having a local replica on the tablet that is
used for all local operations. There is no cross-object consistency requirements for data generated on
the tablet.

2.6.5 Divergence

The expected latency can be quite high because of the supported offline mode. An employee could
take the shop ipad to his grandmothers house and place orders there offline, and not returning it
until days after. However, this will increase the risk of popular items being sold out. A given catalog
has an in-sale period, where orders are accepted. For practical manufacturing reasons, there must
be some time between ordering and delivering, which is controlled by this period. If orders are not
synchronized in before the end of the insale—period, they are likely not going to be accepted.

It is useful for the manufacturer to know when shop employees last synced their iPads. There is
already some monitoring on this. A probabilistic value would not be useful for this.

It may be useful, to stop the shop employee from ordering more, if he has not synced with the
central system for too long.

2.6.6 Partitioning

Currently there is no need for partitioning. Should the volume of requests increase or should there be
a desire to run from multiple data centers, partitioning is an option.

The data is very centered around the shop domain object, and it would therefore be logical to
partition data by shop. By keeping all operations on a given shop in one data center, divergence
would be lowered.

2.6.7 Operational Requirements

This use case requires CRDTs to be available during offline periods. The app is run on client con-
trolled tablets connected to a single manufacturer controlled data center. The architecture is open
for distributing to more data centers, should this become relevant. Data is divided into buckets with
different replication strategies.

e Some data is general and go to all tablet

e Some data is store specific - such as orders - and updateable from both client and server side
e Some data is store-specific, but only updateable from the server. For instance store budgets.
e Some data is store-specific, but only updateable from the client. For instance audit log.

Data modelling was made to give multistore managers access to a list of stores, and country
managers to stores in a complete country.

We expect in the order of magnitude millions of objects with an avg. size of around 10k. Binary
objects are divided into 64k blocks and streamed to the client with low priority.

The object universe is partitioned into countries and stores.

25

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

2.6.8 Security Requirements

Access must be restricted so store employees can only see and update the information for their own
store. Exceptions being country and multi-store managers who must be able to operated on multiple
stores.

Security Model

When starting the app for the first time, the user is asked to log into a central token-issuing authority
by providing userid/password. The token-issuer returns a signed response message stating the clients
id and token expiry time. When the client afterwards needs to sync restricted information from the
central data-server or send any information to it, it must initiate the syncing protocol by sending its
signed identity message. The data-server validates the signature using the token-issuers public key
and builds the user context for later deciding if the user is authorized to the operations he is trying
to do during the session. In time before token expiry, the client automatically renews the token by
providing the old token. This is also the point of a token revocation check.

Data Poisoning Incident

Due to a bug in an app build, invalid order data was injected into some apps. Upon syncing with
the server, this invalid data was then propagated virally to the server and onward to other clients.
Additional security measures guarding the server’s data would have been useful. Such security guards
will likely be easier to implement using ops-based CRDTs than the current state-based model.

Auditing

The app creates a stream of audit information, which is synced to the server when there is a connection.
In the server, this is indexed, and can be queried and aggregated on all contained data fields.

2.6.9 Existing State

This application was built from the ground up for a large clothes manufacturer, who sells boxes of
clothes to thousands of stores in 30+ markets. It replaces a manual process, where travelling salesmen
visited the stores and presented physical clothing sample collections.

26

Chapter 3

Conclusion

To conclude the presentation of the use cases, we present the different research or practical challenges
identified through the questionnaire answers (see Appendix A - Expectations for the Use Cases). Since
one of the goals of Work Package 1 (WP 1) is to provide such challenge to the other work packages,
we present them distributed among the tasks of the WP 1 to Work Package 4 (WP 4). Another goal
of WP 1 is to provide applications on which Work Package 5 (WP 5) evaluation will be conducted.
The use cases to support evaluation in WP 5 will be selected after further formalization (deliverable
D1.2). A summary of the main characteristics of the different use cases presented here is shown in
Table B.1.

3.1 Task 2.1 — Support for CRDTSs at the server side

CRDT at the server side, i.e. replication between a limited set of servers across some data centers,
corresponds to small-scale full replication. Such servers are considered stable and powerful; also, the
latency between them is usually limited. However, a partition can occur between data centers, and
possible divergence must be resolved. The wallet use case adopts such a replication scheme. Indeed,
for security reasons, the replication occurs only at the data center level. The medical use case also
considers only full replication between a limited set of data centers.

3.2 Task 2.2 — Support for CRDTSs at points-of-presence

In this task, the project will study partial-replication and CRDT composition protocols. Partial
replication is applied in the ad-counting use case. The ad-servers and the live statistic nodes only
have partial information of the total counts. The use case suggests a specific protocol that allows
temporary errors and afterward applies correction.

3.3 Task 2.3 — Support for CRDTSs at the edge

Protocols elaborated in this task targets a large scale and dynamic setting. In the music festival use
case, replication is achieved until the edge of the network (i.e. mobile devices), and edge devices must
communicate with each other. The user devices are partial replicas that have degraded connectivity
and no obvious stability. The number of devices considered here can be large, and peer-to-peer or
group communication between devices is used to merge data and to obtain a global CRDT. The shop
ordering use case also considers a dynamic setting of replicas. The employees’ tablets are not stable
and can go offline. However the scale considered here is not large.

3.4 Task 3.1 — CRDT object composition and transactions

Need for guarantees in the presence of CRDT composition appears in wallet and medical use cases.
The medical use case manages quite complex data that might be updated concurrently. The patient

27

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

information, as well as the medication are composite elements, and there are relations between the
data element managed, such as happens-before relationship between prescriptions. Events that modify
several object at the same time (e.g. patient and pharmacy) occur and might be managed by CRDT
transactions. CRDT composition occurs also in the wallet use case that compose virtual money and
vouchers. Transactions between users are not envisaged in the use case description but might be
designed as research goal.

3.5 Task 3.2 — Divergence control and quality-of-data

The ad-counting use case is a typical example where divergence control and quality of data should
be present. A degree of error in the data is tolerated, however the system should be aware of the
quality of data. The music festival is another use case where divergence control can be useful. Indeed,
a decision based on the vote should be taken only when the margin of error is below the margin of
the vote. In the medical use case, knowing, for instance, that some data can be missing should also
be very valuable.

3.6 Task 3.3 — Security

Security is an important aspect of every use case. Data should not be easily corrupted or disclosed
by an attacker. Moreover, in the medical use case security is paramount. Access control must be
managed and the data must not be modified by an unauthorized person. The different users of the
system (doctors, nurses, administrators) have different roles and should have different authorizations.
Security is also achieved a posteriori, since an audit log is produced in order to allow the legal authority
to check the data. Security exigences are also explicitly stated in the wallet use case.

3.7 Task 4.1 — Basic programming model

The basic programming model addresses composition and abstraction of CRDTSs, causality determi-
nation of CRDT operations, and object purging. Abstraction is useful for every use case data type.
Composition is required in the wallet and medical use case. Causality is useful in the medical, the
shop ordering and the wallet use cases. Causality determination allows to order correctly operations
that affect the objects. For example, the operation that credits an amount has to be delivered before
the debit operation.

3.8 Task 4.2 — Extended programming model

The extended programming model addresses transaction support, causality management, stream-
based dataow, and garbage collection. Transactions are present in the medical use case. Causality
management might be useful in use cases where causality determination occurs. For instance, in
the medical use case, causality information - e.g. knowing that a prescription occurred after an
other event - is very important; however traditional causality insurance - waiting before delivering
the dependent operation - is not acceptable. Dataflow occurs in several use cases. Ad counting is a
typical dataflow instance. Also, votes and decisions in the music festival, as well as shop orders and
remaining manufacturer stock, can be considered as dataflow instances. Garbage collection is useful
in any application to remove metadata introduced to manage consistency. However, it is more critical
in use cases where operations occurs frequently and can be compressed into a global result. This is the
case of the ad-counting, the votes in the music festival, and the successive scores in the leaderboard
use cases.

28

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

3.9 Task 4.3 — Final programming model

The final programming model addresses scalability problems. Scalability is a concern of all use cases
(except maybe the shop ordering one as presented here). The ad counts, the wallet transaction, the
medical events on the extent of a country, the online social activity in a music festival, and scores in
mobile games are counted millions, and may be, for some use cases, billions, depending on the success
of the applications.

29

Appendix A

Expectations for the Use Cases

A.1 Use Case Requirements description

A.1.1 Purpose of this document

Gather requirements for natural language use cases. If you need certain aspects to be described, please
write your questions here. If you write use cases, please see here, what the descriptions should include.

A.2 Extended Questionnaire

A.2.1 Existing state

e Says if your application is already implemented and operated or not.

o [f already existing, express the main challenge encountered to develop, maintain and operate the
application in term of each below items (conflict, invariant maintenance, operation performance,
security threats).

A.2.2 Application description

e Describe your application

e Network topology/architecture. Please add a principal network diagram to give a basic under-
standing of the actors, system components such as mobile devices or database servers and the
communication patterns between them. I.e. synchronous calls, messaging, 1 or 2—way state
synchronization.

A.2.3 Conflict Situations

e Can you identify conflict situations, where concurrent updates without synchronization might

break invariants?

A.2.4 Invariants

e Can you identify the invariants of your application?
e Should conflict or invariant violations be prohibited, or is it OK to correct them after the fact?
e Do invariants need to be true at all times or only eventually?

e if invariant violations are to be forbidden (instead of repaired), how important is for all replicas
to be able to execute operation that might lead to invariant violation? (e.g. in the Rovio ad
case, if we have 5 servers serving some given ad that must be shown 50 times, it is possible to
assign 10 ad impressions to each site - this may lead to one server A ending ad impression much

30

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

sooner than the others — is this acceptable, or should server A be allowed more ad impressions
by obtaining rights from other servers)

A.2.5 Transactions

is there any need for updating more than one object atomically in your application? Why? Please
describe the example and explain why is it important for updates to be applied atomically.

A.2.6 Divergence

What is the expected latency?
Is there an “offline” mode?

Are there limits to the degree of temporary divergence allowed? would it be interesting to know
how divergent is the data you are reading (from the data in other replicas/data centers)? Please
give examples.

If yes, what type of information would be useful - number of operations not observed, difference
in the value observed, how long your data is old, some other?

if yes, could you live with a probabilistic value (e.g. there is 90% chance that you are not missing
more than 3 operations)?

Would it be interesting to include a mechanism that guarantees that data is not divergent by
more than some amount?

If yes, what type of information would be useful - number of operations not observed, difference
in the value observed, how long your data is old, some other?

if yes, what price would you be ready to pay for it - increased latency on reads, increased latency
on writes?

If yes, could you live with a probabilistic value?

A.2.7 Partitioning

Does natural partitions exist in the system, such that global consistency can be lowered while
upholding a higher degree of consistency the partitions? For instance if all data in a partition is
handled by the same data center, then it can benefit from reduced latency between members of
the same partition, and thus increased consistency.

Another example: Tiered data—handoff, where a hierarchy is made of nodes on different levels.

A.2.8 Operational Requirements

Why do they require EC? For availability? Performance? Scalability?

Where is the application running: on client-controlled mobile machines or in the infrastructure?
If the latter, in a small number of data centers, or in large numbers of DCs?

How many replicas: tens? thousands? millions?
Full replication or partial replication?

What is the expected number of objects: thousands? millions? billions? Size of each object?
size of the data: bytes? megabytes? gigabytes? Rate of growth?

Is the object universe partitioned (ie composed of discrete, independent databases that can be
managed /replicated independently) or (one single big database)?

31

Work Package 1 Application and environment requirements
Deliverable D1.1 Natural language requirements

A.2.9 Security Requirements

e Access control? at what granularity (object, operation, operation+arguments, user)?
e Information flow control? at what granularity?

e Auditing + rolling back offending updates a posteriori?

32

Appendix B

Other information

B.1 Summary of use cases

The Table B.1 shows a summary of some of the values encountered in the use cases presented in this
document.

33

Work Package 1 Application and environment requirements

Deliverable D1.1 Natural language requirements

abod jrou uo anuuo))

SI9PIO gHQT pue

dLT1 Jo
I9pIo oY) u() 8oy ypny

D001 Jo p
-10 91} U :30[3sonboyy

00T Jo 1oplo

108 eyep

d31 002 g0 0€ o 09T || sSopypne g, T 03 T°0 94} UQ :SpIeo sUDIPIN || JO 9ZIS [®I0],
3T JO IopI0 o1}
M9 Jo syunyp u() :SOLue Jo[-)Ipny
Ul POUIBdI}S pue a300T JO I9pIo o)
g3 Jo suay Of, I10831q sjoolfqo Areurg U :seLue So7-1senbayy
JINT-gMO0T Jo Ieplo

so1dg a1 wWoIq s914q 0GT 30T o8eIoAy oY) U() :SPIBd SUIIPIIN soz1s 100[(q()
SUIYSeY JUI)SISUOD Surysey Juo}SISu0d Surysey JuolsIs

uo poseq suonred 9 | uo paseq suonired 9 | -u0d U0 paseq suorjrpred eJep Jo

ON oN ON || ur ejyep spreys ery | ur ejep spieys Yery | 9Gg Ul Bjep SpIeys YRIY guruonred
JUSWNOOP S[3 SUOI[[Iq IO SUOT[[TU A10981q
-Uls B OJUI Po}esaIs IO Sspalpuny OS oW} ® Spues | JO SIBOA MAJ ® PUR SOLI)
-3e SI9MUNO0Y AUeIA e Suruunl sowes Aueyy -NoY) JOo paipuny Of, | -Us So[-}Ipne JO SUOI[[lg
spues $399(qo uoI[[Iq T 9)vIOULS £A109
-not} JO speIpuny SIosn UOI[[IW ())E Pu® S[O soLIue So7jIpne spues | -s1q Aep-f] pue SOLIJUD
0} dn oseoIoul AR -A9] (00T UMM owes Y || Jo uworuu Jjo sOOT-SOT | -noy) Jo suo)} wor | So[-)senbor Jo SUOIIN
SoLIjuo Jorjrpne

suoI[[Iu S[oADT sysond 000°0L 03 d() | uorq g ‘spIed s109[qo JO

SpURSNONY} JO SUSY, | JO poIpuny Jo suq, | -Toqunu x (Qg / sIosn) SIOPIO JO SUOIIN | "9sons Iod o[dnoo Vy | sumipawr Jo SUOIIN || Poroedxe ‘ON

SUST[} 0} SASBAIOUI
atpes ul serdod nq

dde o1} syre)s
IOSI 9} UoyMm oUOpP SI
SIY,[, "9I09S 97} 0} SS9
-0v)M SIOSTL [[R O}

eol[dal oUuOo M
SISTXa 9SNOYLIRMRIRD ®
uonIppe uy "Ae¥ yoes Jjo
seordol ¢ M SI9)SN[o

oseqeiep e UMM ¢ oseqeiep ' UMM ¢ oseqejep e UM ¢ || payeordor oIe $oI031§ spuesnoy [, | fery e sey O(YorHq seoridoy] ON
pogeor[del o1e 1osn oY}
07 JURAJ[OI S9I0)S WIOIJ
Mg Mg [|| spio A[UQ TeBIRd Mg mAg uoryeotdoy
SOO1ADD
9[IqOW [[B PUR IOAIOG
posn aq pPnoo posn aq posn posn aq posn aq p[noo ‘9I0W AR}
Auwewr mq O T | pmod Auew mnq D T | 09 p[nod Auew g O(T || pmod Awew g D [| Auewt nq T A[RULION | -U9j0J ‘g A[IUSLIN)) SO ON
103M0) py | WIM [BNITA | pIeoqIopear] ded | [eAT}SO] OIS | SMINA
o1A0Y YI0JLIT, IOPIAOIJ

34

Work Package 1 Application and environment requirements

Deliverable D1.1 Natural language requirements

‘sonyea jo Arewruing :1°¢ 9[qr],

finp /$921] f100 950G

fivp /921 fu0o 941

finp /$921) fu00 %4170

umouyun

arqrssod suou

fiop /$301) f u0d 008

99RI JOIJUO))

205 /01

205 /001

225 /0008

205 /1 1moqe

upw /T noqe

25/0g Jnoqe

oyey orepdn

Aou9)

-SIST09 TenjuoA]

(Louagstsuo)) Suong)
N[urypm £ou9)SIsuod
IOUSIY pur ADUDISISUOD

[BQO[8 oMo

ADUD)SISUOD [RNUOAT]

AOUS)SISUOD [RTIJUOAH

AOUD)SISUOD [ENJUSAT

ADUD)SISUOD [RNUOAT]

sdl
uosiod ssolde powimns
-SB ST ADUQISISUOD ON

AoUe)sISUO0))

£ep/INOOT JO
I9pIo | u() :80[yIpny

sAep §1
Ioje pojolep oIe sjsenb

g Aep/gpOT jo 1op
-10 9} u() :30[3senbayy

(mo £104) TR
-U9(] Ul [[IMOIS UOIye|
-ndod 03 Teuonyrodoiq

IMOI3
jo ey

Lo Py |

WIM [BNITA |

pIeoqIopear

qed |

[BATSO D1 |

MINA

01A0Y

HIOJLIT,

I9PIAOIJ

35

	Introduction
	Use Cases
	Ad Counting
	Application description
	Conflict situations
	Invariants
	Transactions
	Divergence
	Partitioning
	Operational Requirements
	Security Requirements
	Existing State

	Leaderboard
	Application description
	Conflict situations
	Invariants
	Transactions
	Divergence
	Partitioning
	Operational Requirements
	Security Requirements
	Existing State

	Virtual Wallet
	Application description
	Conflict Situations
	Invariants
	Transactions
	Divergence
	Partitioning
	Operational Requirements
	Security Requirements
	Existing State

	Centralized National Medications and Drug Treatment System ``FMK''
	Application Description
	Conflict Situations
	Invariants
	Transactions
	Divergence
	Partitioning
	Operational Requirements
	Security Requirements
	Existing State
	On implementing 2m in Riak
	Other Challenges in FMK
	Further Reading

	Music Festival App
	Application Description
	Conflict Situations
	Invariants
	Transactions
	Divergence
	Partitioning
	Operational Requirements
	Security Requirements
	Existing State

	b2b Orders
	Application Description
	Conflict Situations
	Invariants
	Transactions
	Divergence
	Partitioning
	Operational Requirements
	Security Requirements
	Existing State

	Conclusion
	Task 2.1 – Support for crdt at the server side
	Task 2.2 – Support for crdt at points-of-presence
	Task 2.3 – Support for crdt at the edge
	Task 3.1 – crdt object composition and transactions
	Task 3.2 – Divergence control and quality-of-data
	Task 3.3 – Security
	Task 4.1 – Basic programming model
	Task 4.2 – Extended programming model
	Task 4.3 – Final programming model

	Expectations for the Use Cases
	Use Case Requirements description
	Purpose of this document

	Extended Questionnaire
	Existing state
	Application description
	Conflict Situations
	Invariants
	Transactions
	Divergence
	Partitioning
	Operational Requirements
	Security Requirements

	Other information
	Summary of use cases

